Synthèse/TD MF3 Dynamique des fluides

Lycée Dupuy de Lôme, PC 2023-2024

Actions de contact dans un fluide en mouvement

I. Actions mécaniques sur une particule

1. Forces de pression

Pression

Les forces de pression décrivent la composante normale des actions d'un fluide sur une surface élémentaire dS:

$$p = \frac{\overrightarrow{dF}}{\overrightarrow{dS}}, \text{ exprimée en Pascal}(Pa)$$

Densité volumique des forces de pression

On définit $d\overrightarrow{F_p}$ la résultante des forces de pression s'exerçant à la surface d'une particule de fluide de volume $d\tau$.

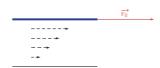
On définit la densité volumique des forces de pression pour une particule de fluide entièrement entourée de fluide qui s'écrit

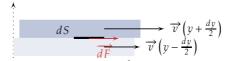
$$\overrightarrow{f_{v,p}(P)} = \frac{\overrightarrow{dF_p}}{d\tau} = -\overrightarrow{grad}(p(P))$$

Pour un écoulement incompressible et homogène ($\mu = C^{te}$), l'énergie potentielle massique associée aux forces de pression a donc pour expression $e_{p,m(\overrightarrow{f_p})} = +\frac{p}{\mu}$

2. Forces de viscosité

Hypothèse d'étude : $\overrightarrow{v} = v(y)$. $\overrightarrow{u_x}$.





Viscosité

Pour un écoulement $\overrightarrow{v}(M,t) = v(y,t).\overrightarrow{e}_x$, la couche supérieure exerce sur la couche inférieure à une surface de séparation dS une force de viscosité

$$\overrightarrow{dF_{visc}} = \eta . \frac{\partial v}{\partial v} . dS. \overrightarrow{e_x}$$

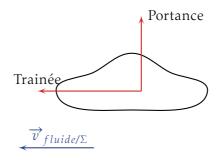
 η : viscosité dynamique du fluide, exprimé en Poiseuille

$$v$$
: viscosité cinématique, $v = \frac{\text{viscosité dynamique}}{\text{masse volumique}} = \frac{\eta}{\mu}$, Unité : $Stokes$ (St)

Densité volumique des forces de viscosité En effectuant un bilan des forces de viscosités à la surface d'une particule de fluide, on peut montrer que la densité volumique des forces de viscosité pour une particule de fluide entièrement entourée de fluide s'écrit

$$\overrightarrow{f_{v,visc}} = +\eta.\Delta\overrightarrow{v}$$

II. Écoulements laminaires et turbulents autour d'un obstacle



portance et trainée

En travaillant dans le référentiel lié au solide étudié, la force qu'exerce le fluide sur le solide peut se décomposer en

- ✓ Trainée, tangente à l'écoulement du fluide (≡ frottement fluide)
- ✓ Portance, normale à l'écoulement du fluide

Nombre de Reynolds

Grandeur sans dimension comparant les effets convectifs et diffusifs d'un écoulement sur un obstacle Pour un objet de dimensions caractéristiques L avec un écoulement d'un fluide de masse volumique μ , de vitesse v_{∞} loin de l'obstacle et de viscosité dynamique η

$$Re = \frac{Ph\acute{e}nom\grave{e}nes\ convectifs}{Ph\acute{e}nom\grave{e}nes\ diffusifs} = \frac{\mu.L.v_{\infty}}{\eta}$$

Pour une particule de fluide de volume $d\tau$ et de masse dm

- ✓ Considérer le terme $-dm.(\overrightarrow{v} \cdot \overrightarrow{grad})\overrightarrow{v}$ comme une pseudo-force associée aux phénomènes convectifs
- ✓ Exprimer la force associée aux phénomènes diffusifs
- ✓ Exprimer le nombre de Reynolds et simplifier son expression par analyse dimensionnelle.

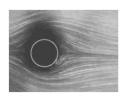
Modèle de Stokes

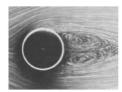
Pour des valeurs faibles du nombre de Reynolds, la trainée pour une sphère est proportionnelle à la vitesse d'écoulement du fluide par rapport à l'obstacle

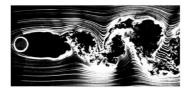
Écoulement laminaire

Un tel écoulement est caractérisé par des lignes de courant régulières ne présentant pas d'évolution erratique. Il correspond à des valeurs du nombre de Reynolds inférieures à 100 environ.

2/3 Version du 17 mars 2025







Re = 15

 $\mathcal{R}e = 260$

Re > 1000

Écoulement parfait

Un écoulement est dit parfait si tous les phénomènes diffusifs peuvent être négligés. Pour une particule de fluide, cela correspond à négliger les phénomènes diffusifs :

- ✓ de quantité de mouvement : Absence de viscosité
- ✓ de transfert thermique : Évolution adiabatique réversible

Couche limite

Sur une petite épaisseur δ autour de l'obstacle se concentrent les phénomènes de viscosité. Au delà, l'écoulement pourra être considéré comme parfait

CAL pour un écoulement

 \overline{A} l'interface de deux systèmes Σ_1 et Σ_2 , pour un écoulement

✓ Parfait : $\overrightarrow{v_{interface}} \cdot \overrightarrow{n_{1\rightarrow 2}} = 0$

✓ Visqueux : $\overrightarrow{v}(I ∈ \Sigma_1) = \overrightarrow{v}(I ∈ \Sigma_2)$