Rayonnement du corps noir

I. Rayonnement du corps noir

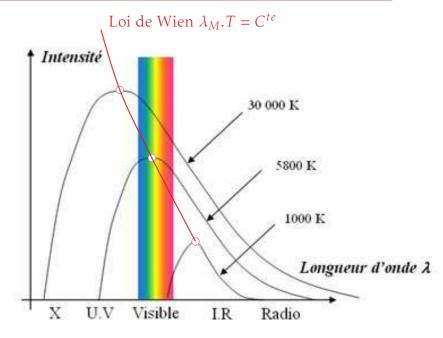
rayonnement

Le rayonnement correspond au transfert de l'énergie par phénomène de propagation d'onde électromagnétique.

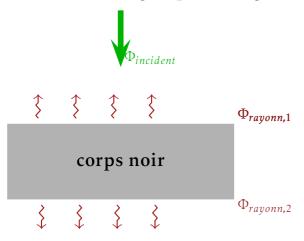
Corps noir

Un corps qui absorbe l'intégralité du rayonnement électromagnétique qu'il reçoit est nommé corps noir

Loi de Wien


La longueur d'onde λ_{Max} correspondant au maximum d'émission du corps noir vérifie la loi de Wien

$$\lambda_M.T = C^{te} = 2,9.10^{-3} K.m$$


Loi de Stefan

La densité de flux (par unité de surface) φ émise par un corps noir dépend de sa température selon la loi

$$\varphi = \sigma.T^{4}$$

$$\sigma = 5,67.10^{-8} \ W.m^{-2}.K^{-4}$$

II. Bilan énergétique en régime stationnaire

Méthode - Bilan énergétique

Pour un corps noir étudié en régime stationnaire :

- ✓ Effectuer le bilan de l'ensemble des flux incidents, Φ_{inc}
- ✓ Effectuer le bilan de l'ensemble des flux rayonnés, Φ_{rav}
- ✓ Traduire le régime stationnaire :

$$\Phi_{ray} = \Phi_{inc}$$

III. Effet de serre

- ✓ On considère le flux solaire surfacique moyen au dessus de l'atmosphère en un point de la Terre : $\varphi_s = 342~W.m^{-2}$
- ✓ On fait l'hypothèse du régime permanent et stationnaire établi
- ✓ On étudie une surface S de la Terre. On considère qu'elle ne peut rayonner que vers l'atmosphère
- ✓ On admet que le rayonnement arrivant sur la surface *S* a traversé une section quasi égale d'atmosphère.
- ✓ L'atmosphère, assimilée à un corps gris, rayonne de manière équivalente vers la Terre et vers l'espace

Albédo

La Terre peut être assimilée à un corps noir. Il faut néanmoins prendre en compte le caractère réfléchissant de la surface de la Terre. On considère qu'une fraction $\mathcal A$ du rayonnement visible incident est réfléchi. Ce phénomène est nommé Albédo.

En moyenne on pourra considérer A = 0.3

Méthode - Température à la surface de la Terre en l'absence d'effet de serre

- ✓ Pour une surface S, déterminer, en fonction de φ_s et A le flux absorbé par la Terre. En déduire le flux surfacique φ_T rayonné par la Terre.
- ✓ Appliquer la loi de Stephan afin de calculer la température attendue à la surface de la Terre en négligeant l'effet de serre.
- ✓ Dans quel domaine de longueur d'onde rayonne la Terre?

Méthode - Température à la surface de la Terre en considérant l'effet de serre

- ✓ Pour une section *S*, placer sur le schéma les flux suivants pour la surface *S*. Préciser le domaine spectral de ces rayonnements. *Vous pouvez fractionner ces flux s'ils sont émis dans plusieurs directions*
 - \mathbf{x} Rayonnement solaire dans le domaine du visible Φ_s
 - \mathbf{x} Rayonnement de l'atmosphère Φ_a
 - \mathbf{X} Rayonnement de la Terre Φ_t
- ✓ Effectuer un bilan énergétique pour les corps noir ou gris (en tenant compte de L'albédo)
- ✓ Relier Φ_s , Φ_a et Φ_t aux densités de flux φ_s , φ_a et φ_t et S
- ✓ En déduire la température à la surface de la Terre. Commenter

Méthode - Évaluer le flux surfacique solaire incident moyen

La température de surface de la Terre est évaluée à $T_s = 5772 K$

- ✓ Exprimer la densité de flux solaire φ_0 en un point de l'orbite terrestre, sachant qu'il n'y a aucune énergie dissipée au cours de la propagation dans le milieu interstellaire.
- ✓ Exprimer le flux total reçu par la Terre en fonction de son rayon $R_T = 6400 \ km$ et de φ_s (*Proposer une surface plane qui recevrait le même flux due la Terre*)
- \checkmark Exprimer l'énergie reçue par la terre pendant une journée (de durée T_{iour})
- \checkmark En considérant une température uniforme à la surface de la Terre, en déduire la valeur de la densité moyenne de flux solaire en un point de la Terre, notée φ_s

2/2 Version du 1er octobre 2024