Eric Ouvrard

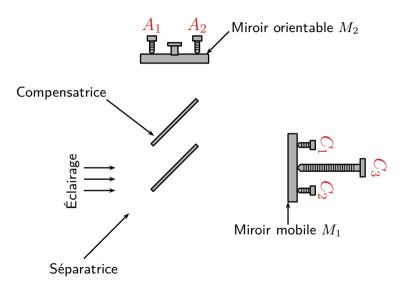
Description du Michelson

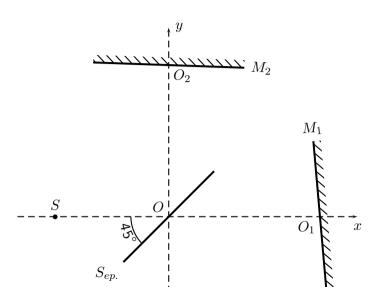
d'air

Réglage en coi: d'air

Interféromètre de Michelson

PC Lycée Dupuy de Lôme


Eric Ouvrard


Description du Michelson

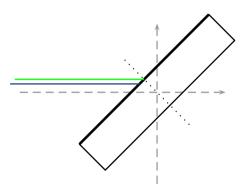
Principe

Rôle de la compensatrio

léglage en lame 'air

Eric Ouvrard

Description du Michelson


Principe

Rôle de la compensatrice

Réglage en lame l'air

Réglage en coin d'air

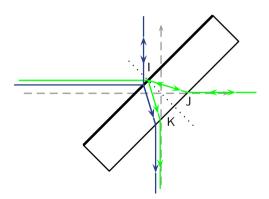
Sans compensatrice

Optique ondulatoire

Eric Ouvrard

Description du Michelson

Principe


Rôle de la compensatrice

Réglage en lame l'air

Réglage en coin d'air

Sans compensatrice

Optique ondulatoire

Eric Ouvrard

Description du Michelson

Principa

Rôle de la compensatrice

léglage en lame 'air

Réglage en coin d'air

Eric Ouvrard

Description du Michelson

Principe

Rôle de la compensatrice

Réglage en lame l'air

Réglage en coin d'air

Réglage en lame d'air

Lorsque les plans des deux miroirs sont orthogonaux aux axes du Michelson, l'interféromètre est réglé en lame d'air.

Lame d'air $e = |OO_2 - OO_1|$

Conditions d'éclairage

La source non ponctuelle doit éclairer l'interféromètre avec une ouverture du faisceau non nulle.

Conditions d'observation

Les franges d'interférence contrastées sont localisées l'infini. On doit donc projeter la figure d'interférences dans le plan focal image d'une lentille convergente.

Optique ondulatoire

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre

Calcul de la différence de marche

Réglage en coin

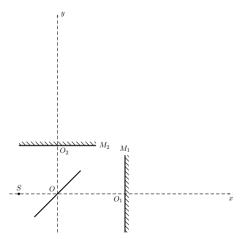
Réglage en coin d'air

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air


Modélisation par deux sources

d'air

Calcul de la différence de marche

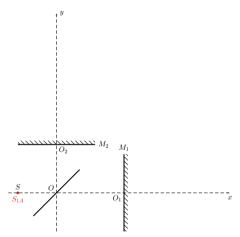
Franges d'égale inclina

Dántana an asin

Eric Ouvrard

Description du Michelson

Réglage en lame d'air


Réglages de l'interféromètre Modélisation en lame d'air

Modélisation par deux sources

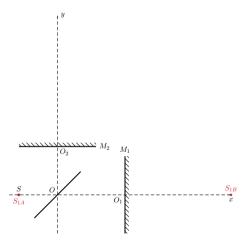
d'air

Calcul de la difference d

marche

Eric Ouvrard

Description du Michelson


Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

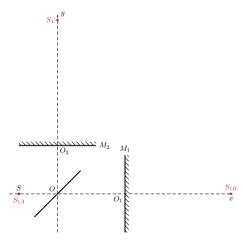
Modélisation par deux sources

d'air

marche

Eric Ouvrard

Description du Michelson

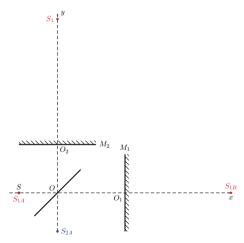

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

Modélisation par deux sources

d'air

Calcul de la différence d



Eric Ouvrard

Réglage en lame d'air

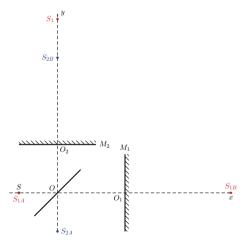
Modélisation par deux sources

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air


Modélisation par deux sources

d'air

marche

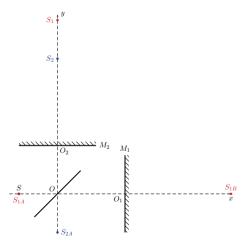
Franges d'égale inclinai

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air


Modélisation par deux sources

d'air

Calcul de la différence o

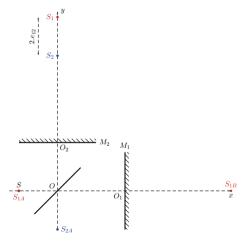
Eranges d'égale inclinai

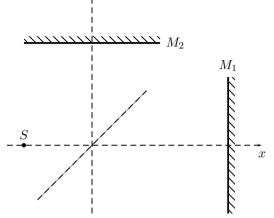
léglage en coin

Eric Ouvrard

Description du Michelson

Réglage en lame d'air


Réglages de l'interféromètre Modélisation en lame d'air


Modélisation par deux sources

d'air

marche

Franges d'égale inclina

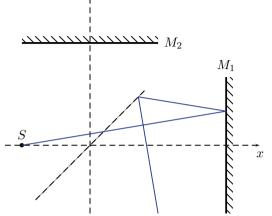
Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

sources


Modélisation par une lame

d'air

Calcul de la différence de

narche

Franges d'égale inclinaisor

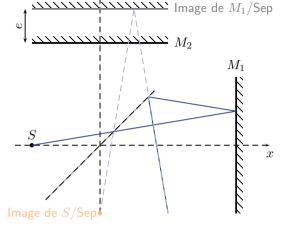
Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

sources


Modélisation par une lame d'air

Calcul de la différence d

marche

Franges d'égale inclinaisor

Páglaga an coin

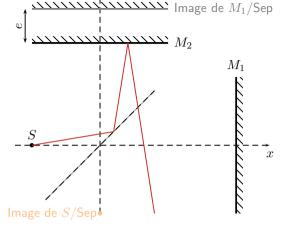
Eric Ouvrard

Description du

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

sources


Modélisation par une lame d'air

Calcul de la différence d

marche

Franges d'égale inclinaiso

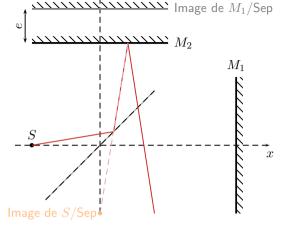
Páglago en coin

Eric Ouvrard

Description du

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air


sources

Modélisation par une lame d'air

Calcul de la différence d

marche

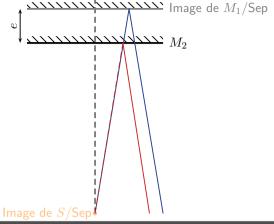
Franges d'égale inclinaison

Eric Ouvrard

Description du

Réglage en lame d'air

Reglages de l'interféromètre Modélisation en lame d'air


sources

Modélisation par une lame d'air

Calcul de la différence d

marche

Franges d'égale inclinaiso

Modélisation en lame d'air

L'interféromètre réglé en lame d'air peut être modélisé par une lame d'air d'épaisseur e éclairé par la source S

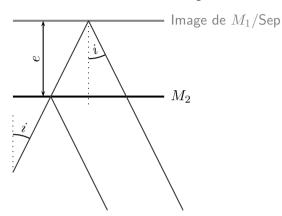
Optique ondulatoire

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre


Modélisation par sources

Modélisation par une lame d'air

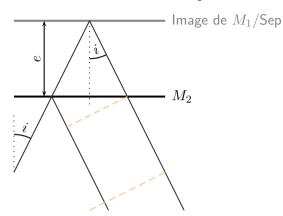
Calcul de la différence d

marche

Franges d'égale inclinai

Optique ondulatoire

Eric Ouvrard


Description du Michelson

Réglage en lame d'air

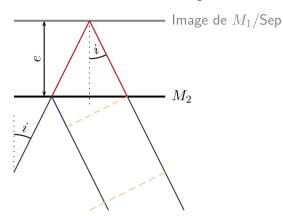
Réglages de l'interféromètre Modélisation en lame d'air

Calcul de la différence de marche

Franges d'égale inclinais

Optique ondulatoire

Eric Ouvrard


Description du Michelson

Réglage en lame d'air

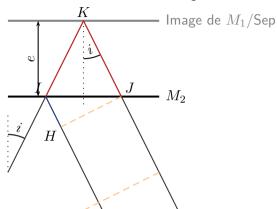
Réglages de l'interféromètre Modélisation en lame d'air

Calcul de la différence de marche

Franges d'égale inclinais

Optique ondulatoire

Eric Ouvrard


Description du Michelson

Réglage en lame d'air

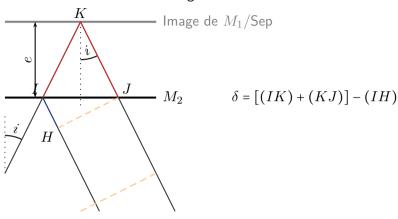
Réglages de l'interféromètre Modélisation en lame d'air

Calcul de la différence de marche

Franges d'égale inclinais

Optique ondulatoire

Eric Ouvrard


Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

Calcul de la différence de marche

Franges d'égale inclinais

Optique ondulatoire

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

Calcul de la différence de marche

Franges d'égale inclinaisor

ϵ M_2 H

Image de $M_1/{\rm Sep}$

$$\delta = [(IK) + (KJ)] - (IH)$$

Différence de marche $\delta = 2.e.cosi$

Optique ondulatoire

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglages de l'interféromètre Modélisation en lame d'air

Calcul de la différence de marche

Franges d'interférence à l'infini observées grâce à une lentille

Ordre d'interférence d'une frange

Les franges localisées à l'infini sont des cercles concentriques auxquels on peut associer un ordre d'interférence pour le k^{ieme} rayon

$$p_k = \frac{2.e}{\lambda_0} \cdot \left(1 - \frac{r_k^2}{2.f'^2}\right)$$

Optique ondulatoire

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

> Modélisation en lame d'air Calcul de la différence de marche

Franges d'égale inclinaison

Réglage en coin d'air

Réglage en coin d'air

Lorsque l'image de M_1 par la séparatrice forme un angle ϵ avec le miroir M_2 , l'interféromètre est réglé en coin d'air.

Angle du coin d'air ϵ

Conditions d'éclairage

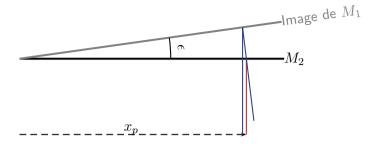
La source non ponctuelle doit éclairer l'interféromètre avec un faisceau de lumière quasi parallèle et normal au plan des miroirs.

Conditions d'observation

Les franges d'interférences contrastées sont localisées sur le miroir M_2 . On doit donc projeter le plan du miroir M_2 sur l'écran grâce à une lentille convergente.

Optique ondulatoire

Eric Ouvrard


Description du Michelson

Réglage en lame d'air

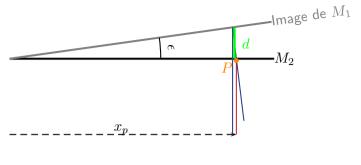
Réglage en coin d'air

Réglages de l'interféromètre

Projection de la figure

Eric Ouvrard

Description du Michelson


Reglage en lame d'air

Réglage en coin d'air

Réglages de l'interféromètre

Calcul de la différence de marche

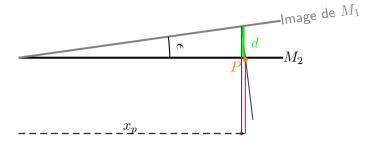
Projection de la figure d'interférence

 $d = x_p.tan\epsilon \equiv x_p.\epsilon$

Optique ondulatoire

Eric Ouvrard

Description du Michelson


d'air

Réglage en coin d'air

Réglages de l'interféromètre

Calcul de la différence de marche

Projection de la figure d'interférence

$$d = x_p.tan\epsilon \equiv x_p.\epsilon$$

Différence de marche en coin d'air

En un point P du plan des miroirs, à une distance x_P du coin d'air, la différence de marche a pour expression

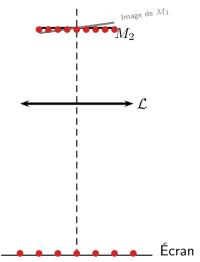
$$\delta = 2.x_p.\epsilon$$

Optique ondulatoire

Eric Ouvrard

Description du Michelson

d'air


Réglage en coin d'air

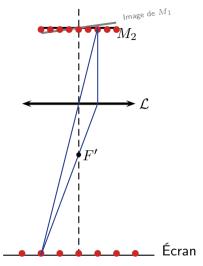
Réglages de l'interféromètre

Calcul de la différence de

marche

Projection de la figure d'interférence

Eric Ouvrard


Description du Michelson

Réglage en lame d'air

Réglage en coin d'air

Réglages de l'interféromètr Calcul de la différence de

Projection de la figure d'interférence

Eric Ouvrard

Description du Michelson

Réglage en lame d'air

Réglage en coin d'air

Réglages de l'interféromètr Calcul de la différence de

Projection de la figure d'interférence