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Phénomène de propagation dispersive

Le phénomène de dispersion correspond à la déformation de la perturbation au cours de la
propagation.

On traitera dans ce chapitre des phénomènes non dispersifs.
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Grandeurs caractéristiques :

Masse linéïque de la corde µ uniforme

Corde tendue avec une tension de norme T

Hypothèses d’étude

Poids négligeable devant les autres interactions

Corde ∞ souple

Petits mouvements transverses
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à t fixé

X
Ð→ex

vibration

Y

Ð→ey

O
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M

x
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Les faibles perturbations permettent de considérer α très faible. Un D.L. à l’ordre 1 en α donne :
sinα ≡ tanα ≡ cosα ≡

On peut relier α et y :
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Les faibles perturbations permettent de considérer α très faible. Un D.L. à l’ordre 1 en α donne :
sinα ≡ tanα ≡ cosα ≡

On peut relier α et y :
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Les faibles perturbations permettent de considérer α très faible. Un D.L. à l’ordre 1 en α donne :
sinα ≡α tanα ≡α cosα ≡1

On peut relier α et y :
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à t fixé

X
Ð→ex

vibration

Y

Ð→ey

O

b
M

x

y(x, t)
α(x, t)

b
M

dx

dy
α

Les faibles perturbations permettent de considérer α très faible. Un D.L. à l’ordre 1 en α donne :
sinα ≡α tanα ≡α cosα ≡1

On peut relier α et y :

Différentielle dy = ∂y
∂x
.dx +

∂y

∂t
.dt avec t fixé

b tanα = ∂y
∂x
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X

b

x

On note
ÐÐ→
Td→g(x, t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et

T (x, t) sa norme.

Dans la base (Ð→ex,
Ð→ey),

ÐÐ→
Td→g(x, t) =
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On note
ÐÐ→
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T (x, t) sa norme.

Dans la base (Ð→ex,
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X

b

ÐÐ
→

Td→
g
(x,

t)

x

On note
ÐÐ→
Td→g(x, t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et

T (x, t) sa norme.

Dans la base (Ð→ex,
Ð→ey),

ÐÐ→
Td→g(x, t) =T (x, t). [cosα(x, t).Ð→ex + sinα(x, t).Ð→ey]
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On note
ÐÐ→
Td→g(x, t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et

T (x, t) sa norme.

Dans la base (Ð→ex,
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X

b

ÐÐ
→

Tg→
d
(x, t)

x

On note
ÐÐ→
Td→g(x, t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et

T (x, t) sa norme.

Dans la base (Ð→ex,
Ð→ey), ÐÐ→Td→g(x, t) =T (x, t). [cosα(x, t).Ð→ex + sinα(x, t).Ð→ey]

Principe des actions réciproques

En tout point de la corde
ÐÐ→
Tg→d(x, t) = −ÐÐ→Td→g(x, t)
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→
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On applique le PFD appliqué à une tranche dx de corde

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)
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On projette cette relation selon l’axe Ox

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)
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On projette cette relation selon l’axe Ox

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T
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On projette cette relation selon l’axe Oy

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T
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On projette cette relation selon l’axe Oy

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T

Oy : dm
∂2y(x, t)
∂t2

= −T.sinα(x − x
2
, t) + T.sinα(x + x

2
, t)
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On exploite l’hypothèse des faibles perturbations

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T

Oy : dm
∂2y(x, t)
∂t2

= −T.sinα(x − x
2
, t) + T.sinα(x + x

2
, t)
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On exploite l’hypothèse des faibles perturbations

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T

Oy : dm
∂2y(x, t)
∂t2

= −T.sinα(x − x
2
, t) + T.sinα(x + x

2
, t) ≈ T (α(x + x

2
, t) − α(x − x

2
, t))

dm
∂2y(x, t)
∂t2

= T. ∂α(x, t)
∂x

.dx
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On exploite l’expression de α

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T

Oy : dm
∂2y(x, t)
∂t2

= −T.sinα(x − x
2
, t) + T.sinα(x + x

2
, t) ≈ T (α(x + x

2
, t) − α(x − x

2
, t))

dm
∂2y(x, t)
∂t2

= T. ∂α(x, t)
∂x

.dx
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On exploite l’expression de α

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T

Oy : dm
∂2y(x, t)
∂t2

= −T.sinα(x − x
2
, t) + T.sinα(x + x

2
, t) ≈ T (α(x + x

2
, t) − α(x − x

2
, t))

dm
∂2y(x, t)
∂t2

= T. ∂α(x, t)
∂x

.dxT.
∂2y(x, t)
∂x2

.dx
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On relie dm et dx

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T

Oy : dm
∂2y(x, t)
∂t2

= −T.sinα(x − x
2
, t) + T.sinα(x + x

2
, t) ≈ T (α(x + x

2
, t) − α(x − x

2
, t))

dm
∂2y(x, t)
∂t2

= T. ∂α(x, t)
∂x

.dxT.
∂2y(x, t)
∂x2

.dx
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On relie dm et dx

PFD : dm
∂2y(x, t)
∂t2

Ð→ey =ÐÐ→Tg→d(x − x
2
, t) +ÐÐ→Td→g(x + x

2
, t)

Ox : 0 = −T (x − x
2
, t).cosα(x − x

2
, t) + T (x + x

2
, t).cosα(x + x

2
, t)

T(x − x
2
, t) = T(x + x

2
, t) ∀(x, t) → T (x, t) = T

Oy : dm
∂2y(x, t)
∂t2

= −T.sinα(x − x
2
, t) + T.sinα(x + x

2
, t) ≈ T (α(x + x

2
, t) − α(x − x

2
, t))

dm
∂2y(x, t)
∂t2

= T. ∂α(x, t)
∂x

.dxT.
∂2y(x, t)
∂x2

.dx

dm = µ.dl = µ. dx

cosα(x, t) ≈ µ.dx
µ.
∂2y(x, t)
∂t2

= T. ∂2y(x, t)
∂x2
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On définit la vitesse de phase de l’onde, vϕ telle que l’équation d’onde s’écrive sous la forme

∂2y(x, t)
∂t2

− v2

ϕ.
∂2y(x, t)
∂x2

= 0

Pour la corde vibrante, le bilan dynamique a donné :

∂2y(x, t)
∂t2

−
T

µ

∂2y(x, t)
∂x2

= 0

Par analyse dimensionnelle

Proposer la forme canonique de l’équation de propagation

Retrouver par analyse dimensionnelle l’expression de la vitesse de phase en fonction de µ et T

vϕ =
√

T

µ
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L’onde se propage selon la direction Ox.
s(x, t) décrit la perturbation due au passage de l’onde en x à l’instant t

Équation d’Alembert unidimensionnelle

Une grandeur physique s(x, t) vérifie l’équation d’Alembert unidimensionnelle si

∂2s

∂t2
− v2

ϕ

∂2s

∂x2
= 0

avec vϕ la vitesse de phase de l’onde, en m.s−1
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Cohérence de la solution avec l’équation

Vérifier que la forme générale de la solution proposée pour une onde progressive est bien solution
de l’équation d’Alembert.
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Cohérence de la solution avec l’équation

Vérifier que la forme générale de la solution proposée pour une onde progressive est bien solution
de l’équation d’Alembert.

f (t − ǫ. x
vϕ
) = f(u) avec u = t − ǫ. x

vϕ

∂f

∂x
= ∂f
∂u
.
∂u

∂x
= −ǫ
vϕ

.
∂f

∂u

∂2f

∂x2
= ∂u
∂x
.
∂

∂u
(∂f
∂x
) = ( −ǫ

vϕ

)2

.
∂2f

∂u2

Plus simplement
∂2f

∂t2
= ∂2f

∂u2

∂2f

∂u2
− c2.( −ǫ

vϕ

)2

.
∂2f

∂u2
= 0

On vérifie donc bien l’équation d’Alembert.
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x

s(x, t)

λ

t

s(x, t)

T

Pulsation k ω

Fréquence σ = k

2π
ν = ω

2π

Période λ = 2π

k
= 1

σ
T = 2π

ω
= 1

ν
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Onde progressive harmonique

Onde Progressive Harmonique se propageant dans le sens des x croissants est caractérisée par

son vecteur d’onde
Ð→
k = kÐ→ux avec k le nombre d’onde.

s(x, t) = S0.cos (ωt − kx +ϕ) Ð→ s = S0e
i(ωt−kx+ϕ)

Relation de dispersion

k = ω

vϕ

Lorsque la vitesse de phase vϕ de l’onde est indépendante de la pulsation ω, la propagation est
dite non dispersive.
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Ondes stationnaires

S’il existe des nœuds où la vibration est nulle à tout instant, il n’y a plus de progression possible
de l’onde. L’onde est alors dite stationnaire.
Pour une telle onde, la solution peut s’écrire sous la forme

s(x, t) = 2.S0cos(ωt + ϕ)cos(kx +ψ)
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