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Phénomeéne de propagation dispersive

Le phénomeéne de dispersion correspond a la déformation de la perturbation au cours de la
propagation.

On traitera dans ce chapitre des phénoménes non dispersifs.



Grandeurs caractéristiques :
o Masse linéique de la corde p uniforme
o Corde tendue avec une tension de norme T
Hypotheéses d’étude
o Poids négligeable devant les autres interactions
o Corde oo souple

@ Petits mouvements transverses
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o Les faibles perturbations permettent de considérer « trés faible. Un D.L. a I'ordre 1 en « donne :
sina = tana = cosa =

o On peut relier a et y :
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o Les faibles perturbations permettent de considérer « trés faible. Un D.L. a I'ordre 1 en « donne :
sino = tana =a cosa =1

o On peut relier a et y :

0 0
Différentielle dy = —y.dm + —y.dt avec t fixé
ox ot

2 tana = —
ox
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On note Ty, 4(x,t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et

T(z,t) sa norme.

Dans la base (ez,¢ey), Tyg(x,t) =

T
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On note Ty, 4(x,t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et
T(z,t) sa norme.

Dans la base (ez,¢y), Ty_qg(z,t) =T (z,t). [cosa(:cr,t).e_z) + sina(m,t).e_;]
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On note Ty, 4(x,t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et
T(z,t) sa norme.

Dans la base (ez,¢y), Ty_g(z,t) =T (z,t). [cosa(:cr,t).e_z) + sina(w,t).e_;]
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On note Ty, 4(x,t) la force exercée en M(x) par la partie droite de la corde sur la partie gauche, et

T(z,t) sa norme.
Dans la base (ez,¢y), Ty_g(z,t) =T (z,t). [cosa(ﬂ,t).e_z) + sina(a:,t).e_y)]

Principe des actions réciproques

En tout point de la corde
Tgﬁd(xvt) = _Td—>g (.CC,t)
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On applique le PFD appliqué a une tranche dx de corde

«O>r «F>r «

a
i

DA




2
o PFD : dm T

On applique le PFD appliqué a une tranche dx de corde
ot?

& =Tyl 2.0) + Tacy (a4 5.1)
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On projette cette relation selon I'axe Oz
&%y(x,t)

e PFD : dm——"=

ot?

& =Tyl 2.0) + Tacy (a4 5.1)
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8t2 =Tg_,d("l;*%,t)+Td_,g(.'L'+%,t)
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On exploite |'expression de «
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e PFD : dm%? =Tyoa(z - %J) + Tyog(z+ %:t)
e Ox:0= 7T(w— %,t).cosa(wf %t) +T(w+ %,t).cosa(z+ %,t)

Etude de la corde
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xX xX
T(w—g,t)=T(z+5,t> V(a,t) - T(x,t)=T :

2. ( Bilan dynamique
e Oy: dm%z’t) = -T.sina(z - %,t) +T.sina(z + %,t) #T(a(z+2,t)-a(z-2,

Equation d'onde
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dm8 th?t) =T. 9oz, t) .dgcT.8 y(@,1) .dx
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?y(x,t —
0 P am PUE DG T 1)+ T o 510)
° Oz:0= *T(l' - %,t).cosa(w - %t) + T(w + %,t).cosa(z + %,t) Etude de la corde
vibrante
xT xT Modélisation
T(.’L’* E,t) = T((L‘+ E,t) V(z,t) - T(x,t)=T
52 z,t - Bilan dynamique
o 0yt amZUD) - 7 sina(s - 5,0) + Tsinala+ 5.1) =T (a(e+5.0)-a(s - £,1))

?y(x,t) Oa(x,t) ?y(x,t)
d 2 =T. LA . AT
m o2 . dxT o2 dz
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0?y(x,t — R
° PFD: dm%e_ﬁ; =Tgoa(z—Z,t) + Tyng(z+ £,1)
0 Oz :0=-T(z- %,t).cosa(w - %t) +T(z+ %,t).cosa(z + %,t) Etude de la corde
vibrante
T(:L'* g,t) = T(.’L‘ + %t) V(z,t) - T(x,t)=T o
82 x,t . Bilan dynamique
0 Oy am PV - sina(s - 5.0)  Toina(i + 3.1) =T (ale+ 5.0) ~ala - 3.0)

82y(x 1) Oa(x,t) 82y(x t)
d L =T. > 2 . LA
m 2 dxT 5 dx

e dm=pdl=p w.dx

S R
cosa(z,t)

2 2
. y(z,t) .79 y(x,t)
ot2 Ox?



On définit la vitesse de phase de I'onde, v, telle que I'équation d'onde s’écrive sous la forme

Py(,t) o Py(z,t) _

0
ot? £ 022
Pour la corde vibrante, le bilan dynamique a donné :
8y(x,t) T 8%y(x,t) ~0

ot? u Oz2
Par analyse dimensionnelle
@ Proposer la forme canonique de |'équation de propagation
@ Retrouver par analyse dimensionnelle I'expression de la vitesse de phase en fonction de p et T'
T

vwz —
I
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L'onde se propage selon la direction Ox.

s(x,t) décrit la perturbation due au passage de I'onde en z a l'instant ¢

Physique des ondes
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E. Ouvrard

Une grandeur physique s(z,t) vérifie I'équation d’Alembert unidimensionnelle si

Equation d'Alembert
0%s 2 02s Forme unidimensionnelle
> U¢ —2 =0 Onde ¢
ot ox Onde progress
avec v, la vitesse de phase de I'onde, en m.s~ 1

harmonique




Cohérence de la solution avec I'équation

Vérifier que la forme générale de la solution proposée pour une onde progressive est bien solution
de I'équation d’'Alembert.
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Vérifier que la forme générale de la solution proposée pour une onde progressive est bien solution
de I'équation d’'Alembert.
Equation d'Alembert
o f (t - e.i) = f(u) avecu=t-e.-L e ——
Ve Ve Onde progressive
of Of ou -e Of : .
e —=—— —=— — 1a

8z Ou Oz vw’au
O o0 (o) (= it
h B "Ou?

dz2 Oz Ou \ Oz v
2 2
@ Plus simplement % = %
2 2 9
° ﬂ —c2. _—E ﬁ -
ou? Ve ou?

On vérifie donc bien I'équation d’Alembert.
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Pulsation

Fréquence

Période
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Onde progressive harmonique

Onde Progressive Harmonique se propageant dans le sens des = croissants est caractérisée par
—

—
son vecteur d'onde k = ku, avec k le nombre d'onde.

s(z,t) = So.cos (wt —kx+p) — s= S CE522)

Relation de dispersion

dite non dispersive.

Lorsque la vitesse de phase v, de I'onde est indépendante de la pulsation w, la propagation est
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Equation d'Alembert

Onde progressi

harmonique

patio-temporelles
Forme de la solution
Solutions stationnaire:

Ondes stationnaires



Ondes stationnaires

S'il existe des noeuds ou la vibration est nulle a tout instant, il n'y a plus de progression possible
de I'onde. L'onde est alors dite stationnaire.

Pour une telle onde, la solution peut s'écrire sous la forme

<

e

s(z,t) = 2.Spcos(wt + p)cos(kx + 1)

Physique des ondes
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Onde 1
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