1. Pour
$$f \ll f_0$$
, $\frac{f}{f_0} \ll 1 \ll \frac{f_0}{f}$ donc $\underline{H} \equiv \frac{H_0}{-j.Q.\frac{f_0}{f}} \longrightarrow 0$
Pour $f \gg f_0$, $\frac{f_0}{f} \ll 1 \ll \frac{f}{f_0}$ donc $\underline{H} \equiv \frac{H_0}{j.Q.\frac{f}{f}} \longrightarrow 0$

Ce filtre ne va donc laisser passer le signal que dans une gamme de fréquence appelée bande passante.

2.
$$G = |\underline{H}| = \frac{1}{\left[1 + Q^2 \cdot \left(\frac{f}{f_0} - \frac{f_0}{f}\right)^2\right]^{\frac{1}{2}}}$$

Ce gain est maximum si le dénominateur est minimum, donc si $\left(\frac{f}{f_0} - \frac{f_0}{f}\right)^2 = 0$, soit pour $f = f_0$. Il est alors égal à H_0

3.
$$G(f_p) = \frac{G_{Max}}{\sqrt{2}}$$
, soit $\frac{1}{\left[1 + Q^2 \cdot \left(\frac{f_p}{f_0} - \frac{f_0}{f_p}\right)^2\right]^{\frac{1}{2}}} = \frac{H_0}{\sqrt{2}}$.

On en déduit que f_p doit être solution de Q^2 . $\left(\frac{f}{f_0} - \frac{f_0}{f}\right)^2 = 1$

On obtient 2, ce qui correspond bien à la relation à connaître $Q = \frac{J_0}{\Delta f}$