
Le primaire est caractérisé par son coefficient d'auto-induction L_1 , le secondaire par L_2 . Le couplage est caractérisé par une mutuelle M. Le secondaire est refermé sur un condensateur. Le primaire est refermé sur un générateur de $fem\ e(t)$

- 1. Dans un premier temps, $e(t) = E.\cos\omega t$. Déterminer l'expression de la fonction de transfert $\underline{H} = \frac{\underline{u}_c}{\underline{e}}$. Exprimer la pulsation de résonance.
- 2. Quel est l'effet d'une permutation de l'une des deux bobines sur la valeur de la pulsation de résonance?
- 3. On considère désormais $\begin{cases} t < 0 : e(t) = 0 \\ t \ge 0 : e(t) = E \end{cases}$ avec aucune énergie dans le circuit à $t = 0^-$. Établir l'équation différentielle vérifiée par $u_c(t)$ et résoudre cette équation.