Un cylindre métallique d'axe OZ, de rayon extérieur a est parcouru par un courant caractérisé par une densité de courant en $M(r, \theta, z) : \overrightarrow{j} = j_0 . exp\left(\frac{r-a}{\delta}\right) . \overrightarrow{e_z}$ On note σ la conductivité électrique du métal.

1. Exprimer la puissance volumique \mathcal{P}_{v} dissipée par effet Joule définie en un point $M(r, \theta, z)$.

- 2. En déduire la puissance dissipée par effet Joule par une longueur L de ce conducteur. Exprimer la résistance associée à
 - cette longueur.
 - 3. Déterminer l'expression approchée de \mathcal{P} si $\delta \ll a$