
Par temps orageux, une vache cherche à s'abriter sous un arbre. Cet arbre est foudroyé, entrainant le passage d'un courant I = 15 kA pendant une durée Δt = 1 s au travers du tronc. Le tronc est supposé cylindrique de rayon a.

Ce courant se répartit avec une densité volumique de courant en un point $M(r,\theta)$ dans la terre $\overrightarrow{j} = j(r).\overrightarrow{e_r}$ pour r > a.

La terre est assimilée à un conducteur de conductivité γ = 1 $S; m^{-1}$

- 1. Montrer qu'en un point de la terre tel que r > a, $j(r) = \frac{\pm I}{2.\pi r^2}$ et préciser le signe.
- ${f 2.}$ Rappeler l'expression de la loi d'Ohm locale. En déduire l'expression du champ électrique puis du potentiel associé en M
- 3. On considère $d \gg p$. En déduire une expression approchée de la différence de potentiel U entre les pattes avant et arrière de la vache
- 4. On considère $R \equiv 2 \ k\Omega$ la résistance entre les pattes avant et arrière. Déterminer la distance d_m à respecter afin que la vache ne risque pas d'électrocution mortelle (On considère le danger à partir du moment où un courant supérieur à $I_M = 30 \ mA$ traverse le corps de la vache.

Utiliser le formulaire d'analyse vetorielle