$M(r,\theta,\varphi)$ de la zone de rayonnement, on admet que $\overrightarrow{E} = \frac{\mu_0}{4\pi} \cdot \frac{\ddot{p}\left(t - \frac{r}{c}\right)}{r} \cdot sin\theta \cdot \overrightarrow{u_{\theta}}$ 1. On admet que localement, le champ a la même structure que celui d'une onde plane progressive se propageant selon $\overrightarrow{u_r}$.

On considère un dipôle de moment dipolaire $\vec{p}(t) = p_0.\cos\omega.t.\vec{u_z}$. L'onde rayonnée se propage dans le vide. En un point

- à la vitesse c. En déduire l'expression de \overrightarrow{B} . 2. Exprimer le vecteur de Poynting. Donner l'allure du diagramme de rayonnement.
- 3. On considère une surface élémentaire $\overrightarrow{dS} = dS \cdot \overrightarrow{e_r}$, normale à la direction de propagation, en $M(r, \theta, \varphi)$. Exprimer dS.
- **4.** En déduire la puissance élémentaire $d\mathcal{P}$ traversant la surface élémentaire dS
- 5. Déterminer la puissance totale émise par la source