

Un voiture de course doit passer une épingle à cheveux. Les bas-coté de la route ont pour rayons de courbure $R_a = 3 m$ et $R_b = 7 m$. On étudie les deux trajectoires $A_0A_1(-)$ et $B_0B_1(-)$. Les contraintes sont les suivantes :

- ✓ La vitesse doit être uniforme sur l'ensemble des parcours A_0A_1 d'une part, B_0B_1 d'autre part
 - ✓ afin de conserver une adhérence suffisante, l'accélération de la voiture ne doit jamais dépasser en norme la valeur limite $a_0 = 0, 8.g, g$ étant l'accélération de pesanteur.
 - 1. Relier, au cours d'une trajectoire circulaire uniforme, la norme de la vitesse v, de l'accélération a et le rayon de la trajectoire r.
 - 2. En déduire, pour chacune des trajectoire, les vitesses v_A (et v_B) à ne pas dépasser dans le virage.
- 3. Exprimer la durée de parcours Δt_b pour la trajectoire B_0B_1 dans les conditions optimales.
- 4. Exprimer la durée de parcours Δt_a pour la trajectoire A_0A_1 dans les conditions optimales.
- **5.** Quelle est la trajectoire à privilégier?