$\overrightarrow{a} = -\gamma_0 . \overrightarrow{u_x}$; on en déduit $\begin{cases} \overrightarrow{v} = (-\gamma_0 . t + Cte) \overrightarrow{u_x} \\ \overrightarrow{v}_{(t-\tau)} = V_0 \overrightarrow{u_x} \end{cases}$ soit $\overrightarrow{v} = (-\gamma_0 . (t-\tau) + V_0) \overrightarrow{u_x}$

1. La voiture parcourt une distance V_0 , τ pendant le temps de réaction du conducteur.

$$= -\gamma_0.u_x; \text{ on en deduit} \left\{ \overrightarrow{v}_{(t=\tau)} = V_0 \overrightarrow{u}_x \right\}$$
 soit $v = (-\gamma_0.(t-\tau) + V_0) u_x$

 $\begin{cases}
\overrightarrow{OM} = \left(-\frac{\gamma_0}{2}.(t-\tau)^2 + V_0.t + Cte\right)\overrightarrow{u_x} & \text{donc } \overrightarrow{OM} = \left(-\frac{\gamma_0}{2}.(t-\tau)^2 + V_0.t\right)\overrightarrow{u_x} \\
\overrightarrow{OM}_{(t=\tau)} = V_0.\tau.\overrightarrow{u_x} & \overrightarrow{v}_{t=\Delta t} = \overrightarrow{0}. \text{ Soit } \Delta t = \tau + \frac{V_0}{\gamma_0}
\end{cases}$ 2. Pour $t = \Delta t$, $\overrightarrow{v}_{t=\Delta t} = \overrightarrow{0}$. Soit $\Delta t = \tau + \frac{V_0}{\gamma_0}$

$$(v_0, \tau, u_x)$$
 $(v_{t=\Delta t} = \overrightarrow{0})$. Soit $\Delta t = \tau + \frac{V_0}{\gamma_0}$

en déduire la distance parcourue
$$D = \left(-\frac{\gamma_0}{2} \cdot \left(\frac{V_0}{\gamma_0}\right)^2 + V_0 \cdot \left(\tau + \frac{V_0}{\gamma_0}\right)\right) \overrightarrow{u_x}$$

On peut en déduire la distance parcourue $D = \left(-\frac{\gamma_0}{2} \cdot \left(\frac{V_0}{\gamma_0}\right)^2 + V_0 \cdot \left(\tau + \frac{V_0}{\gamma_0}\right)\right) \overrightarrow{u_x}$

 $D = V_0.\tau + \frac{V_0^2}{2\gamma_0}$

Application numérique : $V_0 = \frac{90}{3.6} m.s^{-1} = 25 m.s^{-1} \text{ donc } D = 56,7 m.$