
On étudie un contacteur dont l'objectif est d'arrêter un système en rotation s'il atteint une vitesse angulaire limite ω_{lim} . Cela correspondra au contact entre les points A et B

Le point A a une masse m. Il est lié à un ressort (k, l_0) et peut coulisser sans frottement le long de l'axe Ox'. Les variations de la vitesse angulaire ω sont très lentes de sorte que l'on

peut étudier le système dans l'hypothèse d'une rotation uniforme $\omega \equiv C^{te}$. L'ensemble est placé dans le plan horizontal. $l_0 = 10 \ cm$; $m = 500 \ g$; $k = 800 \ N.m^{-1}$

- 1. Définir le référentiel \mathcal{R}' dans lequel le système pourra être considéré en équilibre, caractériser son mouvement dans \mathcal{R} .
- **2.** On considère l'équilibre de A dans \mathcal{R}' . Relier alors $l_{eq} = OA$ à ω , l_0 , k et m.
- 3. Le modèle du ressort n'est valable que si $l < 2.l_0$. Pour cette condition limite atteinte au moment du contact, calculer ω_{lim} .

