
Le système considéré est un solide de masse m, assimilé à un point matériel M, simplement posé sur le sol, plan et horizontal.



Les mouvements du sol et du point M sont supposés purement verticaux. A partir de t=0, le sol est animé de vibrations verticales d'élongation  $\overrightarrow{z_s}=z_0\left(1-\cos\omega t\right)\overrightarrow{e_z}$ , dans le référentiel  $\mathcal{R}_g$  galiléen d'axe Oz

- On note  $\mathcal{R}$  le référentiel d'axe  $O_1Z$  lié au sol,  $O_1$  étant un point du sol de cote  $z_s(t)$ 
  - 1. Écrire l'équation du mouvement du point M, dans le référentiel  $\mathcal{R}$ . Montrer qu'il existe une condition sur  $\omega$  (on notera  $\omega_1$  la valeur limite) telle qu'il y ait décollage du point M par rapport au sol.
  - **2.** On suppose  $\omega > \omega_1$ .
    - (a) Déterminer la cote  $z_D$  du sol lorsque le décollage se réalise.
    - (b) Déterminer l'altitude maximale  $z_m$  atteinte par le point M