- 1. Le PFD s'écrit à l'équilibre : $-.k.(l_{eq} l_0) m.g.l_{eq} = 0$, soit $l_{eq} = l_0 \frac{m.g}{k}$ 2. $\checkmark z = 0$ pour la position d'équilibre. On a donc $l = z + l_{eq}$
 - ✓ Le PFD s'écrit cette fois $-.k.(l-l_0) m.g.z \mu.\dot{z} = m.\ddot{z}$ soit $\ddot{z} + \frac{\mu}{m}\dot{z} + \frac{k}{m}z = 0$ On peut proposer la forme canonique $\ddot{z} + 2.\sigma.\omega_0.\dot{z} + \omega_0^2.z = 0$
- On peut proposer la forme canonique z + 2.σ.ω₀.z + ω₀^τ.z = 0
 ✓ La solution est pseudo périodique donc pour l'équation caractéristique Δ = ω₀². (σ² 1) = i².ω₀². (1 σ²) < 0, donc r = σ.ω₀ ± ω₀.√1 σ²
 ✓ La forme générale de la solution est donc z(t) = e^{-σ.ω₀.t}. (A.cosωt + B.sinωt) avec ω = ω₀.√1 σ²
 - ✓ Les conditions initiales donnent $\begin{vmatrix} z(0) = 0 = A \\ \dot{z}(0) = -v_0 = B.\omega \end{vmatrix}$ soit $\boxed{z(t) = \frac{-v_0}{\omega}.e^{-\sigma.\omega_0.t}sin\omega t}$
- 3. Le ressort ne peut donc pas retenir la masse, on doit avoir $l < l_0$ soit $z + l_{eq} < l_0$ donc $z < \frac{l_0}{4}$. Or z_{max} sera atteint lorsque $sin(\omega t_1) = -1$ donc lorsque $t_1 = \frac{3.\pi}{2.\omega}$. On aura alors $z(t_1) = \frac{v_0}{\omega} e^{-\sigma \omega_0 \cdot t_1} < \frac{l_0}{4}$, ce qui donne donc une condition sur l_0 .