On note \mathcal{R} le référentiel du laboratoire. Le centre roue de diamètre D=60~cm se déplace à une vitesse uniforme $\overrightarrow{v_0}(C,\mathcal{R})=v_0.\overrightarrow{e_x}$ avec $v_0=12,56~m.s^{-1}$.

- La valve M de masse m se trouve sur le contour de la roue. On note \mathcal{R}' de centre C et en translation dans \mathcal{R} le référentiel dit barycentrique de la roue. La roue est en rotation uniforme dans \mathcal{R}' avec une vitesse angulaire ω . Cette rotation est due au roulement de la roue sur la route horizontale.
 - 1. Définir deux bases qui vous semblent utiles à la projection des différents vecteurs vitesse.
 - **2.** Exprimer le vecteur $\overrightarrow{\Omega}$ dans l'une des bases choisies.
 - **3.** Dans la base de votre choix, exprimer le vecteur $\overrightarrow{v}(M, \mathcal{R}')$
 - **4.** Dans la base de votre choix, exprimer le vecteur $\overrightarrow{v}(M,\mathcal{R})$