$\overrightarrow{e_z}$ l'axe vertical ascendant et $v_0 = 1 \ m.s^{-1}$. Le débit au niveau d'une surface S est donné par la relation $D_v = \iint_S \overrightarrow{v}_{\mathcal{R}} \cdot \overrightarrow{dS}$ avec \mathcal{R} le référentiel lié à la surface S.

On considère une pluie sans vent, de sorte que les gouttes d'eau ont une vitesse dans le référentiel terrestre $\overrightarrow{v_0} = -v_0 \cdot \overrightarrow{e_z}$ avec

- Le pare-brise d'une voiture a une surface S=1 m^2 et fait un angle $\alpha=45^\circ$ avec l'horizontale.
 - 1. Calculer le débit volumique au niveau du pare-brise lorsque la voiture est à l'arrêt.
 - 2. La voiture se déplace désormais sur une route horizontale avec une vitesse $\overrightarrow{v_1} = v_1 \cdot \overrightarrow{e_x}$ dans le référentiel terrestre.

 - \checkmark Déterminer l'expression du vecteur vitesse $\overrightarrow{v_r}$ de la pluie dans le référentiel \mathcal{R}' lié à la voiture.

 \checkmark Exprimer le débit volumique au niveau du pare-brise en fonction de v_r