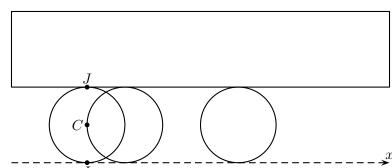
L'une des méthodes pressenties pour déplacer un menhir est l'utilisation de troncs d'arbres :

On note $\mathcal{R}(O, Ox, Oy, Oz)$ le référentiel lié au sol. Le mehnir modélisé par un parallélépipède repose sur des troncs d'arbre assimilés à des cylindres de rayon a. On déplace le mehnir à une vitesse uniforme $\overrightarrow{v_0} = v_0 \cdot \overrightarrow{e_x}$ dans le référentiel lié au sol.



On suppose $\stackrel{I}{q}$ que le roulement des troncs se fait sans glissement. On admet que cela se traduit pour les points I et J d'un tronc d'arbre au contact respectivement du sol et du menhir par les relations $\overrightarrow{v}(I,\mathcal{R}) = \overrightarrow{0}$ et $\overrightarrow{v}(J,\mathcal{R}) = \overrightarrow{v}_0$

On note $\mathcal{R}'(C, Cx, Cy, Cz)$ le référentiel d'origine le centre d'un tronc d'arbre, en translation dans \mathcal{R}

Dans ce référentiel, le tronc d'arbre est un solide en rotation d'axe Oy à la vitesse angulaire Ω .

On utilise la base $B(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$

- 1. Placer les axes Oy et Oz afin que Ω soit du même signe que v_0
 - **2.** Exprimer $\overrightarrow{v}(I, \mathcal{R}')$ et $\overrightarrow{v}(J, \mathcal{R}')$ en fonction Ω et a.
 - **3.** En déduire les expressions de $\overrightarrow{v}(I,\mathcal{R})$ et $\overrightarrow{v}(J,\mathcal{R})$ en fonction de $\overrightarrow{v}(C,\mathcal{R})$, Ω et a.
 - 4. En déduire l'expression de ω en fonction de v_0 et a

