Le fluide est éjecté à une distance D de l'arrête du cube avec une vitesse $\overrightarrow{v_0}$, dirigée vers l'arrête. Les effets de bords seront négligés dans la direction perpendiculaire au plan de la figure.

1. Pourquoi peut-on définir un potentiel $\Phi(M,t)$ caractérisant l'écoulement? Donner les composantes de la vitesse en

fonction de Φ , dans la base $\mathfrak{B}\{\overrightarrow{u_r},\overrightarrow{u_\theta},\overrightarrow{u_z}\}$.

2. Quelle relation vérifie le potentiel $\Phi(M,t)$?

On propose de chercher une solution sous la forme $\Phi(r,\theta) = f(r).g(\theta)$. On donne l'expression d'un Laplacien en coordonnées cylindriques : $\Delta \Phi = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{\partial^2 \Phi}{\partial z^2}$

$$\frac{\Delta \Psi - r}{r} \cdot \frac{\partial r}{\partial r} \left(r \cdot \frac{\partial r}{\partial r} \right) + \frac{r^2}{r^2} \frac{\partial \theta^2}{\partial \theta^2} + \frac{\partial z^2}{\partial z^2}$$
3. Déterminer les équations différentielles vérifiées par $f(r)$ d'une part et par $g(\theta)$ d'autre part. (On pourra définir une

On considère un écoulement incompressible, permanent et irrotationnel d'un fluide dans un dièdre d'angle α .

- constante K). 4. Préciser les conditions aux limites et en déduire des conditions sur g'(0) et $g'(\alpha)$. Montrer qu cela impose le signe de la
- constante K.

 5. En déduire, en le justifiant, que $g(\theta) = \lambda . cos \frac{\pi . \theta}{\alpha}$.
- **6.** Montrer que $f(r) = \lambda r^{\beta}$ est solution de l'équation différentielle vérifiée par f(r). Exprimer β .
- where $f(r) = \lambda r$ est solution de l'equation differentière vermée par f(r). Exprimer

8. Exprimer le champ des vitesses.

7. Déterminer l'expression de la constante λ