On repère un point $M(r, \theta, z)$ de ce écoulement avec une vitesse $\overrightarrow{v}(M) = v(r).\overrightarrow{e_{\theta}}$.

Cet écoulement peut être caractérisé par un vecteur tourbillon $\overrightarrow{\Omega} = \begin{vmatrix} r \leqslant a : \Omega_0.\overrightarrow{e_z} \\ r > a : 0 \end{vmatrix}$.

L'écoulement de l'air pour une tornade est supposé incompressible à symértie cylindrique autour d'un axe vertical noté Oz.

- 1. Par une étude analogue à celle d'une distribution de courant par le Théorème d'Ampère, déterminer l'expression v(r) en tout point M.
- en tout point M. 2. On appelle Vortex le cas limite pour lequel $a \to 0$ et $\Omega_0 \to \infty$ avec $\Omega_0.a^2 = \frac{\Gamma}{2\pi}$ où Γ est une constante finie.
 - Montrer que la vitesse dérive alors d'un potentiel Φ tel que $\overrightarrow{v} = \overrightarrow{qrad}\Phi$ pour $r \neq 0$