On considère un fluide entre deux cylindres de hauteur H et de rayons a et b. Le champ des vitesses Eulériens est du type $\overrightarrow{v} = v(r) \cdot \overrightarrow{e_{\theta}}$. On sait de plus que v(a) = 0 et $v(b) = v_0$.

L'écoulement est rotationnel pour a < r < b, caractérisé par un vecteur tourbillon $\overrightarrow{\Omega} = \Omega_0 \cdot \overrightarrow{e_z}$ constant entre a et b.

- 1. Rappeler la définition du vecteur tourbillon $\overrightarrow{\Omega}$ en fonction de \overrightarrow{v} 2. Par analogie avec le théorème d'Ampère, donner une relation intégrale issue de la définition de Ω .
- 3. Déterminer complètement le champ des vitesses et exprimer ainsi Ω en fonction de v_0 , a et b. **4.** Exprimer le débit volumique à travers une surface $\theta = C^{te}$.