des constantes A et B en fonction de v_0 et a. 2. Déterminer, selon les valeurs du paramètre $\alpha = \frac{K}{a.v_0}$, le nombre et la position des points d'arrêt surface du cylindre. En déduire dans chaque cas l'allure des lignes de courant autour du cylindre.

1. A partir des conditions aux limites vérifiées par ce champ de vitesses pour $r \to a$ et pour $r \to \infty$, déduire les expressions

On considère que le cylindre est animé d'un mouvement de rotation de vitesse angulaire $\Omega = \omega \cdot \overrightarrow{e_z}$ dans le référentiel \mathcal{R} . On admet qu'alors le champ de vitesse $\overrightarrow{v}(M)$ de l'écoulement bidimensionnel et irrotationnel a pour expression, en coordonnées

 $\overrightarrow{v}(M) = \left(A - \frac{B}{r^2}\right)\cos\theta\overrightarrow{e_r} + \left[\frac{K}{r} - \left(A + \frac{B}{r^2}\right)\sin\theta\right]\overrightarrow{e_\theta}$

2. Déterminer, selon les valeurs du paramètre
$$\alpha = \frac{K}{a \cdot v_0}$$
, le nombre et la position des poi

polaires:

A, B et K étant des constantes, $K = a^2 \cdot \omega$.

- 3. Appliquer le théorème de Bernoulli entre un point à l'infini et un point à la surface du cylindre. En déduire l'expression de la pression P en un point de la couche fluide en contact avec la surface du cylindre en fonction de ρ , v_0 , α , θ et P_0 étant la pression du fluide loin de l'aile.
- 4. Déterminer la force $\overrightarrow{F_M}$, dite force de Magnus, exercée par le fluide sur une portion de longueur h du cylindre en fonction de ρ , v_0 , K et h. On rappelle que $\int_0^{2.\pi} \cos^3 \theta . d\theta = \int_0^{2.\pi} \sin^3 \theta . d\theta = 0$
- 5. Quel sera le sens choisi pour le vecteur rotation $\overrightarrow{\Omega}$ (donc le signe de ω) afin que ce modèle explique la portance d'une aile d'avion?