On recherche le mode symétrique : $\varphi(x) = \varphi(-x)$, ce qui amène à A = A', donc $\varphi(x) = A$. $(e^{ikx} + e^{-ikx}) = 2.A.\cos(kx)$

2. Comme
$$E < V_0$$
, on obtient $\varphi(x) = B.e^{Kx} + C.e^{-Kx}$ avec $K = \frac{\sqrt{2.(V_0 - E).m}}{\hbar}$

3. On doit vérifier que $\varphi_2\left(\frac{3.a}{2}\right) = 0 = B.e^{K\frac{3.a}{2}} + C.e^{-K\frac{3.a}{2}}$, ce qui donne $\varphi_2(x) = B.\left(e^{Kx} + e^{-K(3.a-x)}\right)$

- 4. Comme on recherche le mode symétrique, on doit avoir $\varphi_3(x) = B.(e^{-Kx} + e^{-K(3.a+x)})$
- 5. On exploite la continuité de $\varphi(x)$ et de sa dérivée en $x=\frac{a}{2}$: $\begin{vmatrix} 2.A.\cos\frac{k.a}{2} = B.\left(e^{K\frac{a}{2}} + e^{-K\left(3.a - \frac{a}{2}\right)}\right) \\ -2.k.A.\sin\frac{k.a}{2} = K.B.\left(e^{K\frac{a}{2}} - e^{-K\left(3.a - \frac{a}{2}\right)}\right) \end{vmatrix}$

1. Comme E > V(x) = 0, on obtient $\varphi(x) = A.e^{ikx} + A'.e^{-ikx}$ avec $k = \frac{\sqrt{2.E.m}}{L}$

- On obtient donc $tan \frac{k.a}{2} = -K \cdot \frac{e^{K\frac{a}{2}} e^{-K(3.a \frac{a}{2})}}{e^{K\frac{a}{2}} + e^{-K(3.a \frac{a}{2})}}$ avec $K^2 + k^2 = \frac{2.m.E}{\pi^2}$
- **6.** On doit vérifier la normalisation de la fonction d'onde. Pour le mode symétrique : $\int_0^{\frac{3.a}{2}} |\varphi(x)|^2 dx = \frac{1}{9}$, ce qui donne : $2. \left[\int_0^{\frac{a}{2}} |2.A.\cos(kx)|^2 .dx + \int_{\frac{a}{2}}^{\frac{3.a}{2}} |B.(e^{Kx} + e^{-K(3.a-x)})|^2 .dx \right] = 1$