sera d'autant plus grande que f' sera grand. On choisit donc la lentille \mathcal{L}_2 . 2. Les franges sont localisées sur les miroirs avec une interfange $i = \frac{\lambda}{2.6} = 0,51 \ mm$. L'interfange sur l'écran est telle que

1. Les franges sont localisées à l'infini. On place donc l'écran dans le plan focal image de la lentille. La figure d'interférence

- $i' = \gamma . i$, donc $\gamma = \pm 10$
- Or pour une lentille, $\gamma = \frac{f'}{\overline{FA}}$ donc $\overline{FA} = \frac{f'}{\gamma}$ ($\overline{FA} < 0$ donc $\gamma = -10$
- - De même, $\overline{FA'} = -f'.\gamma$. On choisit donc \mathcal{L}_2 afin de minimiser l'encombrement. Alors $\overline{0A} = -f' + \overline{FA} = \frac{-11}{10}.f' = -33$ cm