- 1. $I = I_0 \cdot \left(1 + \cos\left(\frac{2.\pi \cdot 2.e}{\lambda_0}\right)\right)$
- 2. Voici l'évolution de l'intensité détectée : (la valeur N n'est pas respectée...)
- ✓ Pour la position des franges brillantes, on suppose cette lampe monochromatique de longueur d'on, de λ_0 .
 - On a donc $\delta = p \cdot \lambda_0$ avec $p \in \mathcal{Z}$
 - ✓ Pour la variation Δe , on a compté N franges brillantes.
 - Or pour une frange brillante, $\delta_p = 2.e_p = \lambda_0.p$
 - Soit $e_{p+N} e_p = \Delta e = N \cdot \frac{\lambda_0}{2}$
 - On en déduit que $\lambda_0 = \frac{2.\Delta e}{N} = \frac{2.290.10^{-6}}{0.92} = 590,63~nm$
 - ✓ On considère ici le doublet avec les longueurs d'onde $\lambda_a = \lambda_0 \frac{\delta \lambda_0}{2}$ et $\lambda_b = \lambda_0 + \frac{\delta \lambda_0}{2}$ Pour déterminer les positions
 - des brouillages, on recherche les valeurs de δ telles que les ordres d'interférence associés à ces longueurs d'onde soient tels que $p_b - p_a = \frac{1}{2} + k$ avec $k \in \mathbb{Z}$
 - Or $p_a = \frac{\delta}{\lambda}$ et $p_b = \frac{\delta}{\lambda}$. On a donc la condition de brouillage : $\delta \cdot \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_1}\right) = \frac{1}{2} + k$
 - On peut simplifier cette relation en effectuant un développement limité au premier ordre :
 - $\left(\frac{1}{\lambda_a} \frac{1}{\lambda_b}\right) = \frac{1}{\lambda_0} \cdot \left| \frac{1}{1 \frac{\delta \lambda}{2 \lambda_b}} \frac{1}{1 + \frac{\delta \lambda}{2 \lambda_b}} \right|$
 - $= \frac{1}{2.\lambda_0} \cdot \left[\left(1 + \frac{\delta \lambda}{2.\lambda_0} \right) \left(1 \frac{\delta \lambda}{2.\lambda_0} \right) \right]$ $= \frac{\delta \lambda}{\lambda_0^2}$ La condition de brouillage est donc $\delta_k = \frac{\lambda_0^2}{\delta \lambda} \cdot \left(\frac{1}{2} + k\right)$
- **3.** La condition de brouillage est donnée par $\delta_k = 2.e_k = \frac{\lambda_0^2}{\delta \lambda} \cdot \left(\frac{1}{2} + k\right)$
- On a donc entre deux brouillages consécutifs $e_{k+1} e_k = \Delta e = \frac{\lambda_0^2}{s_0}$
 - Ce qui donne $\delta \lambda = \frac{\lambda_0^2}{\Delta_c} = 1, 2 \ nm$
- **4.** Les longueurs d'onde du doublet sont donc $\lambda_{a,b} = (590, 6 \pm 0, 6)$ nm