lame L_1 introduit, entre les vibrations selon les lignes neutres, différence de phase α_1 . Le système est éclairé en lumière parallèle.

1. Exprimer α_1 en fonction de Δn , e et λ , longueur d'onde dans le vide de la lumière traversant le système.

On se place dans le cas particulier de quatre lames (de quatre polariseurs et du polariseur d'entrée P_0).

2. On néglige l'absorption due à la traversée des lames et polariseurs successifs. Exprimer l'intensité lumineuse I_1 à la sortie du premier polariseur, puis l'intensité I transmise par le système en fonction de l'intensité I_0 transmise par le polariseur

On considère le montage suivant constitué d'un ensemble de N lames cristallines de même matériau caractérisé par $Deltan = n_x \, n_y$, dont les épaisseurs sont respectivement : e, 2e, 4e, ... $2(N^{\circ}1)e$, dont les axes rapides (et donc aussi les axes lents) sont tous alignés. Les lames sont séparées par des polariseurs rectilignes idéaux dont les directions de transmissions privilégiées,

L'ensemble est placé entre un polariseur et un analyseur rectilignes parallèles à l'ensemble des polariseurs intermédiaires. La

 P_0 .

3. Commenter l'allure de la courbe $\frac{I}{I_0} = f(\alpha_1)$ donnée ci-dessous.

de « monochromateur »?

toutes identiques, sont orientées à 45° des lignes neutres des lames.

4. Application numérique : $e = 250 \ \mu m$ et $\Delta n = n_x - n_y = 10$. Calculer les longueurs d'onde transmises dans le visible en supposant Δn indépendant de la longueur d'onde. Quelles sont les couleurs correspondantes? Comment caractériser la propriété principale de ce dispositif? Pourquoi le qualifier