entre les pendule et l'axe sont supposées de type pivot parfaites. Chaque pendule est relié à ses voisins par un fil de torsion de constante K, confondu avec Ox. Le couple exercé par un fil de torsion tend à ramener le fil vers une torsion nulle. Le couple du type $\Gamma = \pm K \cdot \Delta \theta$ avec $\Delta \theta$ l'angle de torsion du fil.

Chaque pendule est constitué d'une barre homogène de masse m et de longueur l et de moment d'inertie, par rapport à l'axe Ox, $J_{\Delta} = \frac{m \cdot l^2}{2}$. Il oscille dans un plan $O_n yz$ par rapport à l'axe horizontal Ox. O_n est le point d'accroche du pendule n sur l'axe, d'abscisse n.a. On repère par θ_n la position angulaire du pendule n par rapport à sa position d'équilibre. Les liaison

- **1.** **Déterminer l'équation reliant θ_{n-1} , θ_n et θ_{n+1} et $\frac{\partial^2 \theta_n}{\partial t^2}$.
- 2. *En se plaçant dans l'approximation des milieux continus et le cas d'angles faibles, vérifier que $\theta(x,t)$ est solution de
- l'équation aux dérivées partielles $\frac{m.l^2}{2}\frac{\partial^2 \theta}{\partial t^2} + \frac{m.g.l}{2}\theta K.a^2 \cdot \frac{\partial^2 \theta}{\partial x^2} = 0.$

3. *Proposer une forme générale pour la solution $\underline{\theta}(x,t)$ en considérant une progression éventuelle de l'onde selon $+\overrightarrow{\theta_x}$

- **4.** *Montrer que la relation de dispersion s'écrit $k^2 = \frac{\omega^2 \omega_c^2}{c^2}$, exprimer c et ω_c .

On néglige tout frottement avec l'air.

5. *On considère $\omega > \omega_c$. Qualifier le milieu. Donner les vitesses de groupe et de phase. Commenter.