On fait l'hypothèse d'une onde se propageant dans ce milieu du type $\underline{\epsilon} = \epsilon_0.e^{i(\omega t - \underline{k}.x)}$ avec $\epsilon(x,t)$ le déplacement de la masse en x par rapport à sa position d'équilibre.

On a pour ce système la relation $\omega = 2.\omega_0.\sin\frac{k.a}{2}$

On considère des masses m séparées par des ressorts de longueur à vide a et de raideur K.

- Nommer cette relation.
 Définir et exprimer deux vitesses associées à cette onde. Remarquer une relation entre ces deux vitesses.
 On crée en x = 0 de courtes impulsions dont la représentation spectrale est centrée autour de ω₀, avec une largeur
- 3. On crée en x=0 de courtes impulsions dont la représentation spectrale est centrée autour de ω_0 , avec une largeu spectrale $\Delta\omega$, chacune d'entre elles étant séparées d'une durée T. Un récepteur est placé en x=L. Déterminer la durée d'une impulsion émise ainsi que sa vitesse de propagation.