On considère deux miroirs placés en z = 0 (M_b) et z = L (M_a) . On considère une vibration transversale du champ électrique dans la cavité dont la valeur scalaire est notée E(z,t)Pour un plan situé en z_0 , on définit le coefficient de réflexion r tel que $r = \frac{E_{refl}(z_0, t)}{E_{refl}(z_0, t)}$. On considère les deux miroirs idéaux.

On considère l'existence d'une vibration initiale en z=0 correspondant à une onde progressive $\underline{E}_1=E_0.e^{i(\omega t-k.z)}$

On rappelle que $k = \frac{\omega}{c}$ pour une OPPH dans le vide

- 1. Montrer que dans le cas d'un miroir idéal, r = -1.
- **2.** Pour le miroir M_a , exprimer le champ incident en $\underline{E}_{inc,a}(L,t)$ puis le champ réfléchi $\underline{E}_{refl,a}(L,t)$, en fonction de E_0 , L,
- ω et k.
- 3. Sachant que $\underline{E}_{refl.a}(z,t) = E_a.e^{i.(\omega t + k.z \varphi)}$, déterminer φ et E_a .
- 4. Pour le miroir M_b , exprimer le champ incident en $\underline{E}_{inc,b}(0,t)$ puis le champ réfléchi $\underline{E}_{refl,b}(0,t)$, en fonction de E_0 , L, ω et k
- 5. Sachant que $\underline{E}_{refl,b}(z,t) = E_b.e^{i.(\omega t k.z \Phi)}$, déterminer Φ et E_b . On note \underline{E}_2 ce champ.
- 6. Le champ \underline{E}_2 va lui-même subir des réflexions sur les deux miroirs pour former à l'issue de ces deux réflexions un champ \underline{E}_3 . Par analogie à l'étude précédente, exprimer \underline{E}_3 en fonction de E_0 , L, ω et k.
- 7. On note \underline{E}_n le champ à l'issue de 2.n réflexions sur les miroirs. Donner son expression en fonction de E_0 , Φ , ω , ket n. 8. La résultante du champ correspondant à une onde progressive dans le sens croissant selon Oz dans la cavité s'écrit
- $\underline{E}_{tot}(z,t) = \sum_{n=0}^{\infty} \underline{E}_n(z,t).$ 9. On admet que l'intensité lumineuse associée a pour expression $I = \alpha \mathcal{R}e\left(\overrightarrow{\underline{E}}.\overrightarrow{\underline{E}*}\right)$. Déterminer la condition sur L afin que
- l'intensité soit maximale.

 $Donn\acute{e}e : \sum_{n=0}^{\infty} e^{-i.\Phi.p} \equiv \frac{1}{1 - \alpha.e^{-i.\Phi}}$