On considère une OPPH se propageant dans le vide avec $\overrightarrow{E} = E_0.cos(\omega t - k.x).\overrightarrow{e_y}$ On souhaite modifier l'état de polarisation de cette onde afin que le champ électrique soit polarisé selon la direction \overrightarrow{u} faisant un angle $\alpha = 45$ ° avec l'axe Oy1. Exprimer le vecteur unitaire \overrightarrow{u} dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$

- 2. On propose d'utiliser un polariseur afin d'obtenir la polarisation souhaitée
 - ✓ Comment doit-on placer le polariseur?
 - \checkmark Exprimer, à une phase φ_1 près, le champ électrique $\overrightarrow{E_1}$ à la sortie du polariseur
 - \checkmark Exprimer l'amplitude des vibrations E_1 en fonction de E_0
- 3. Afin d'obtenir une amplitude E_0 de la vibration du champ, on propose d'utiliser deux lames quart d'onde identiques. On note $\overrightarrow{u_L}$ le vecteur unitaire donnant la direction de l'axe lent
- ✓ Comment placer $\overrightarrow{u_{La}}$ pour la première lame afin d'obtenir une polarisation circulaire gauche du champ $\overrightarrow{E_a}$ à la sortie? Écrire ce champ dans la base
- sortie? Écrire ce champ dans la base

 Comment placer $\overrightarrow{u_{Lb}}$ pour la seconde lame afin d'obtenir la polarisation rectiligne souhaitée du champ à la sortie?

 Écrire ce champ $\overrightarrow{E_b}$ dans la base et vérifier que l'amplitude de la vibration est égale à E_0 .