Un gaz parfait monoatomique est contenu dans un cylindre de section $S = 10 \ cm^2$.

Thermostat T_1

Le gaz occupe initialement un volume V_0 = 10 L

Le cylindre a des parois diathermes (sauf pour le cas 5). Le piston supposé sans masse est mobile sans frottement (sauf dans le cas 4)

On détaille les différentes transformations étudiées :

- ✓ Cas 1 : On pose une masse m sur le piston, le cylindre étant au contact de la source T_0 .
- ✓ Cas 2 : On pose successivement et petit à petit N masses δm (avec $N.\delta m = m$) sur le piston, le cylindre étant au contact de la source T_0 .
- ✓ Cas 3 : On remplace le thermostat T_0 par un thermostat T_1 , le piston étant mobile
- \checkmark Cas 4 : On remplace le thermostat T_0 par un thermostat T_1 , le piston étant fixé
- ✓ Cas 5 : Les parois sont calorifugées. On pose successivement et petit à petit N masses δm (avec $N.\delta m = m$) sur le piston, le cylindre étant au contact de la source T_0 .

Pour chacune des transformations :

- 1. Nommer la transformation en utilisant les termes suivants : isotherme, monotherme, isobare, monobare, isochore, adiabatique, quasistatique, brutale.
- 2. Déterminer les paramètres d'état pour l'état final.
- **3.** Exprimer le travail des forces de pression W ainsi que le transfert thermique Q en fonction (éventuellement) de p_0 , m, g, S, T_0 , T_1 , γ .
- 4. Par un bilan entropique, déterminer le caractère réversible ou non de la transformation