
On comprime une mole de dioxygène, assimilé à un gaz parfait diatomique de température $T_i = 300~K$ et de pression $P_i = 1,00~bar$ jusqu'à une température $T_f = T_i$ et une pression $P_f = 5,00~bar$. La compression peut se produire de deux façons différentes :

- ✓ La première A_iA_f est isotherme.
 ✓ La seconde suit le chemin A_iEA_f.
- 1. Calculer le travail qu'il reçoit au cours de l'évolution A_iA_f . En déduire le

transfert thermique pour le système étudié.

- 2. Calculer le travail qu'il reçoit au cours de l'évolution A_iEA_f . le transfert thermique pour le système étudié.
- 3. Comparer les variations d'énergie interne le long des deux chemins.