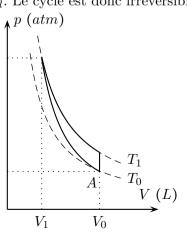
1. $W_{cycle} < 0$ si on parcourt le cycle dans le sens horaire, donc

AB adiabatique, BC isotherme et CA isochore.


- **2.** Pour AB, $p.V^{\gamma} = Cte$ donc $\gamma = \frac{-ln\frac{\gamma}{p_1}}{ln\frac{V_0}{V_*}} = 1, 4 = \frac{7}{5}$. (Il s'agit donc d'un gaz diatomique)
- 3. Par définition $\eta = \left| \frac{W_{cycle}}{Q_c} \right|$ avec $Q_c = Q_{BC}$ et $W_{cycle} = -Q_{BC} Q_{CA}$

✓ Pour l'isotherme réversible $BC: W_{BC} = -n.R.T_1.ln\frac{V_0}{V_1}$ donc $Q_{BC} = -W_{BC} = -n.R.T_1.ln\frac{V_1}{V_0}$

✓ Pour l'isochore $CA: Q_{CA} = \frac{n.R}{\gamma - 1}.(T_0 - T_1)$

Par conséquent $\eta = \left[1 + \frac{\frac{n.R}{\gamma - 1}.(T_0 - T_1)}{n.R.T_1.ln\frac{V_1}{V_0}}\right]$

4. Pour un cycle idéal de Carnot, $\eta_{ideal} = 1 - \frac{T_F}{T_C}$. On obtient ici $\eta < \eta_{ideal}$. Le cycle est donc irréversible.

On peut étudier le refroidissement isochore et montrer que $S^c_{CA}>0$