transformations quasistatiques est assimilable à un gaz parfait diatomique. Ce gaz est initialement à l'état d'équilibre thermodynamique $A(p_0, V_M, T_F)$ Celui-ci subit une compression adiabatique puis une évolution isochore au contact de la source chaude. Il est alors dans un

On considère un moteur à explosion. On considère en première approximation que le fluide subissant une succession de

Il retourne à son état initial par une détente adiabatique suivie d'un refroidissement isochore. Données : $T_F = 300~K$; $T_c = 700~K$, $a = \frac{V_M}{V_{--}} = 5$ et $\gamma = 1, 4$.

état d'équilibre thermodynamique $C(p_1, V_m, T_C)$

 V_m

1. Déterminer les températures du gaz en fin d'évolutions adiabatiques, en fonction de T_F , T_C et a.

2. Définir puis exprimer le rendement en fonction de a et γ
3. Selon quel cycle aurait-on pu obtenir un meilleur rendement entre ces mêmes sources? quelle aurait alors été la valeur du rendement maximum?