
Une pompe a chaleur (machine frigorifique) permet de fournir de l'énergie à l'intérieur d'une maison (à la température T_i) en en prélevant une partie à l'air extérieur ... ou le sol (à la température T_e = 5 °).

La pompe à chaleur comporte un compresseur convertissant une énergie électrique en énergie mécanique fournie au fluide calo-porteur de la machine frigorifique. On note $\mathcal{P}=30~kW$ la puissance électrique consommée.

Le schéma de principe est fourni ci-contre. On considère toutes les transformations réversibles. La maison a une capacité thermique $C = 1500 \ kJ.K^{-1}$. Elle est supposée

pour un cycle.

parfaitement calorifugée. La température initiale dans la maison est T_0 = 10 ° que l'on souhaite amener à T_1 = 20 ° Pour un cycle de transformations thermodynamiques du fluide calo-porteur, les transferts thermiques avec les sources sont assez faibles. Ils seront notés δQ_F et δQ_C (transferts vus du fluide). On notera dT_i l'évolution de la température de la maison

- 1. Relier dT_i , δQ_C et C. Vérifier que le signe de δQ_C est cohérent.
- 2. Par une utilisation d'un bilan thermodynamique sur un cycle de transformation pour le fluide, en déduire l'expression de δQ_F en fonction de dT_i , T_i , T_e et C.
- 3. Exprimer le travail utile δW_u reçu par le fluide pour un cycle de transformations en fonction de dT_i , T_i , T_e et C
- 4. En déduire la durée Δt de la mise en température de la maison.