Un fluide frigorigène subit un cycle de transformations thermodynamiques par circulation au travers de différents modules avec un débit massique $D_m = 100 \ g.s^{-1}$:

1. La vapeur saturante est comprimée de la pression p_1 à la pression $p_2 = 10 \ bar$ au travers d'un compresseur

- The report sweathers of comprises the problem p_1 to the problem p_2 to the fact that compressed in
- 2. Le fluide traverse l'échangeur thermique avec la source chaude. Il est à l'état de liquide saturant en sortie de ce échangeur, à la pression p_2
- 3. Le fluide traverse le détendeur (calorifugé et sans pièces mobiles) qui l'amène à la pression p_1
- 4. Il traverse alors l'échangeur thermique avec la source froide avant de retourner dans le compresseur.

Données

		T (°c	$h_l (kJ.kg^{-1})$	$h_v (kJ.kg^{-1})$
	$p = 1 \ bar$	-30	10	175
	p = 10 bar	41	80	205

✓ Caractéristiques thermodynamiques de ce fluide :

✓ Pour un liquide, l'entropie massique a pour expression $s_1 = s_0 + c.ln \frac{T_1}{T_0}$

- ✓ La variation d'entropie massique au cours d'une vaporisation a pour expression $\Delta s = \frac{h_v h_l}{T}$ avec T la température de changement d'état
- 1. Déterminer l'enthalpie massique du fluide à la sortie du détendeur
 - 2. En déduire la fraction massique de vapeur à la sortie du détendeur
 - 3. Montrer que cette détente est irréversible. Comment justifier cette irréversibilité?
- 4. Déterminer la puissance thermique échangée avec la source froide. Quelle doit être la condition sur la température de la source froide pour que cet échange ait lieu?