
- 1. On considère la vapeur juste saturante à $T_0 = 320 \ K$ (état initial A). On souhaite amener la vapeur à une pression de $10 \ atm$ de manière isentropique grâce à un compresseur calorifugé.
 - \checkmark Déterminer la valeur de l'entropie massique pour l'état initial A
 - \checkmark Placer l'état final B pour le fluide.
 - ✓ Évaluer le travail massique utile fourni au compresseur idéal calorifugé.
- 2. On considère un débit massique $D_m = 100~g.s^{-1}$ pour le fluide étudié.

On a en amont de l'échangeur thermique (état C) un liquide saturant à la température $T_0 = 320 \ K$. La source thermique fournit à l'échangeur une puissance $\mathcal{P} = 50 \ kW$. On nomme D l'état en sortie de l'échangeur

- \checkmark Placer sur le diagramme le point C
- \checkmark Exprimer le transfert thermique massique q reçu par le fluide en fonction de \mathcal{P} et D_m
- \checkmark Placer le point D sur le diagramme.
- ✓ En déduire le titre massique en vapeur.
- 3. Un liquide juste saturant à l'état E est détendu dans un détendeur calorifugé jusqu'à la température T_0 . L'état final est alors l'état D

Déterminer la température T_E ainsi que la pression p_E .

