Pour le premier cycle : ✓ L'état initial se trouve sur la courbe d'ébullition à la pression p_m = 30 kPa

✓ La transformation $1 \rightarrow 2$ se fait à enthalpie constante. Il s'agit donc d'une verticale avec le point 2 à la pression

✓ La transformation $2 \rightarrow 3 \rightarrow 4$ est isobare, avec le point 4 sur la courbe de rosée ✓ La transformation $4 \rightarrow 4'$ est isentropique, on suit donc une isentropique du diagramme jusqu'à la pression p_m car

la transformation $4' \rightarrow 1$ est isobare à la pression p_m **2.** Selon le théorème des moments : $x_v = \frac{h_4 - h_L}{h_v - h_L} = \frac{LM}{LV} = \frac{10.7}{15.2}$

3. Pour un moteur, le transfert avec la source chaude $q_{1c} > 0$. Il s'agit donc de la transformation $2 \to 3 \to 4$. Celui avec la source froide se faisant au cours de l'évolution $4' \rightarrow 1$

4. Au cours des échanges thermiques, il n'y a pas de travail utile échangé, par conséquent :

 $q_{1c} = h_4 - h_2 = 2330 \text{ kJ.kg}^{-1}$

 $q_{1f} = h_1 - h_{4'} - 1610 \ kJ.kg^{-1}$ 5. $\eta_1 = \frac{w_u}{1} = 1 + \frac{q_{1f}}{1} = 31 \%$. Effectuer l'application numérique.

 $p_{M} = 10^{5} kPa$

Pour le second cycle Il y a juste une surchauffe, ce qui ne modifie pas le principe d'étude. Le point 5 se trouve toujours à la pression p_M , mais à

la température 873 K

 $q_{2c} = h_5 - h_2 = 3140 \ kJ.kg^{-1}$ $q_{2f} = h_1 - h_6 = -2050 \ kJ.kg^{-1}$ $\eta_2 = \frac{w_u}{} = 1 + \frac{q_{2f}}{} = 35 \%$

Le rendement a sensiblement augmenté, mais en plus le travail fourni par la turbine est beaucoup plus imùportant $(w_u = h_6 - h_5)$