- 1. Voir le cours

On obtient donc $A = \frac{-2.p_0}{\sqrt{\pi}}$ et $B = p_0$

On remarque que $p(0,t) = \overline{p_0 \ \forall t}$.

- 2. On rappelle que $\frac{dg}{du} = .e^{-u^2}$, on peut donc calculer : $\frac{\partial^2 g}{\partial x^2} = -\frac{2.a^2.u}{t}.e^{-u^2}$ et $\frac{\partial g}{\partial t} = -\frac{u}{2.t}.e^{-u^2}$.
- g(u) vérifie l'équation de la diffusion pour $a = \frac{1}{2\sqrt{D}}$.

- On peut vérifier facilement que $p(x,t) = A \cdot q(u) + B$ vérifie alors l'équation de la diffusion.