matériau est noté λ . On supposera la température de l'eau dans la conduite constante, égale à $\theta_1 = 65$ °c. L'air extérieur est à la température $\theta_0 = 20$ °c. Les contact aux interfaces eau-tuyau et tuyau-air sont supposés idéaux. On étudie le système en régime permanent.

De l'eau circule à l'intérieur d'un tuyau de diamètres intérieur d et extérieur D. Le coefficient de conductivité thermique du

- 1. À l'aide d'un global d'énergie, montrer que le vecteur densité volumique de courant thermique dans les parois du tuyau s'écrit sous la forme $\overrightarrow{j} = \frac{A}{n} \cdot \overrightarrow{u_r}$, avec A une constante.
- 2. À l'aide de la loi de Fourier, en déduire une expression de A en fonction de T_0 , T_1 , λ , d et D3. On considère Une longueur de 50 m de tuyau d-D=12-14 mm en cuivre, caractérisé par $\lambda=400$ SI. Sachant que l'on paye le Kilo Watt.heure environ 20 ct d'euro, estimer le cout des pertes sur une année.