
Chapitre 02 : Séries numériques – Cours complet.        - 1 - 

Séries numériques.               Chap. 02 : cours complet.  
 
1. Séries de réels et de complexes.  

 
Définition 1.1 :  série de réels ou de complexes 
Définition 1.2 :  série convergente ou divergente 
Remarque :  influence des premiers termes d’une série sur la convergence 
Théorème 1.1 :  condition nécessaire de convergence 
Théorème 1.2 :  critère de divergence grossière 
Théorème 1.3 : série géométrique complexe 
Définition 1.3 :  série télescopique 
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Théorème 1.7 :  cas de trois séries liées par une somme 
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2. Séries de réels positifs.  

 
Théorème 2.1 : premier critère de convergence pour les séries à termes réels positifs 
Théorème 2.2 :  règle des majorants 

 
3. Séries réelles de signe quelconque, séries compl exes.  

 
Définition 3.1 :  série réelle ou complexe absolument convergente 
Théorème 3.1 : lien entre convergence et absolue convergence 
Définition 3.2 : série semi-convergente 
Théorème 3.2 : règle des équivalents 
Théorème 3.3 : séries de Riemann 
Théorème 3.4 : règle des « grands O », des « petits o » 
Théorème 3.5 : règle des « nα » 
Théorème 3.6 : règle de d’Alembert 
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4. Séries réelles alternées.  

 
Définition 4.1 :  série alternée 
Théorème 4.1 : critère spécial des séries alternées 

 
5. Compléments.  

 
Théorème 5.1 : (hors programme) séries de Bertrand 
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Séries numériques.                    Chap. 02 : cours complet.  
 
1. Séries de réels et de complexes.  
 

Définition 1.1 : série de réels ou de complexes  
Soit (un) une suite de réels ou de complexes. 

On appelle série de terme général un, la suite (SN) définie par : ∀ N ∈ �, ∑
=

=
N

n
nN uS

0

. 

La suite (Sn) est aussi appelée suite des sommes partielles de la série.  
On la note encore ∑

≥0n
nu . 

 
Définition 1.2 : série convergente ou divergente  

Soit (un) une suite de réels ou de complexes. 
On dit que la série de terme général un converge, si et seulement si la suite (Sn) est convergente.  

Sa limite se note alors : ∑
+∞

=+∞→
==

0

lim
n

nN
N

uSS , et est appelée « somme de la série ». 

Si une série n’est pas convergente, on dit qu’elle diverge. 

En cas de convergence, on appelle reste d’ordre N de la série la quantité : ∑
+∞

+=
=−=

1Nn
nNN uSSR , et la 

suite (SN) tend vers 0. 
 

Remarque :  
Les premiers termes n’interviennent pas pour la convergence d’une série.  
Tous les critères de convergence restent donc valables si les conditions demandées sont remplies « à 
partir d’un certain rang ». 
En cas de convergence, la valeur des premiers termes en revanche influe sur la somme de la série. 
 

Théorème 1.1 : condition nécessaire de convergence  
Si la série réelle ou complexe ∑ nu converge, alors la suite (un) tend vers 0 à l’infini. 

Démonstration : 
Si la série ∑ nu converge, alors la suite (SN) de ses sommes partielles par définition converge, donc la 

suite (SN – SN-1)N≥1 tend vers 0. 
Or : ∀ N ≥ 1, SN – SN-1 = uN, et la suite (un) tend vers 0. 

 
Théorème 1.2 : critère de divergence grossière  

Si la suite réelle ou complexe (un) ne tend pas vers 0, alors la série ∑ nu diverge. 

Démonstration : 
C’est la contraposée de l’implication précédente. 

 
Théorème 1.3 : série géométrique complexe  

Soit : z ∈ �.  

Alors ∑ nz converge si et seulement si : |z| < 1 , et dans ce cas, on a : 
z

z
n

n

−
=∑

+∞

= 1

1

0

.  

Démonstration : 
Pour : z = 1, la série géométrique diverge, puisque son terme général ne tend pas vers 0. 

Pour : z ∈ �, z ≠ 1, on a : ∀ N ∈ �, 
z

z
z

NN

n

n

−
−=

+

=
∑ 1

1 1

0

, et cette suite converge si et seulement si : |z| < 1.  

De plus, dans ce cas, la somme de la série vaut : 
zz

z
z

n

n
n

n

−
=

−
−=

+

+∞→

+∞

=
∑ 1

1

1

1
lim

1

0

. 
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Définition 1.3 : série télescopique  
Une série réelle ou complexe∑ nu  est dite télescopique lorsque son terme général peut se mettre sous 

la forme : ∀ n ∈ �, un = an+1 – an, où (an) est une suite de réels ou de complexes. 
 
Théorème 1.4 : convergence d’une série télescopique  

Une série télescopique réelle ou complexe ∑ nu , avec : ∀ n ∈ �, un = an+1 – an, converge si et 

seulement si (an) est une suite convergente. 

Dans ce cas, on a : ∑
+∞

=+∞→
=−

0
0)lim(

n
nn

n
uaa . 

Démonstration : 
Soit (Sn) la suite des sommes partielles de la série ∑ nu . 

Alors : ∀ n ∈ �, Sn = an+1 – a0, et l’équivalence ainsi que la valeur de la limite en découle. 
 

Théorème 1.5 : combinaison linéaire de séries conve rgentes  
Soient ∑ nu et ∑ nv des séries réelles ou complexes convergentes, et : (α,β) ∈ �2 ou �2. 

On pose : ∀ n ∈ �, wn = α.un + β.vn. 

Alors ∑ nw  est une série convergente et on a : ∑ ∑ ∑
+∞

=

+∞

=

+∞

=

+=
0 0 0

..
n n n

nnn vuw βα . 

Démonstration : 
En notant (Un), (Vn), (Wn) les suites de sommes partielles des séries ∑ nu , ∑ nv , et ∑ nw , on a : 

  ∀ n ∈ �, Wn = α.Un + β.Vn, et le résultat se déduit du résultat identique sur les suites. 
 

Théorème 1.6 : équivalence de convergence en cas de  produit par un scalaire non nul  
Soit ∑ nu une série réelle ou complexe, α un scalaire réel ou complexe non nul. 

Alors ∑ nu converge si et seulement si ∑ nu.α , et dans ce cas : ∑∑
+∞

=

+∞

=

=
00

..
n

n
n

n uu αα . 

Démonstration : 
• Si ∑ nu converge alors ∑ nu.α aussi comme cas particulier du théorème précédent. 

• Si ∑ nu.α converge, alors ∑ nu aussi en la multipliant par 
α
1

. 

 
Théorème 1.7 : cas de trois séries liées par une so mme  

Soient ∑ nu et ∑ nv des séries réelles ou complexes, et : ∀ n ∈ �, wn = un + vn. 

Alors si deux des trois séries ∑ nu , ∑ nv , ∑ nw , convergent, la troisième converge aussi.  

Si l’une diverge, au moins l’une des deux autres diverge. 
Démonstration : 

Si ∑ nu et ∑ nv convergent, alors ∑ nw aussi comme somme de deux séries convergentes. 

Si ∑ nu (par exemple) et ∑ nw convergent, alors ∑ nv aussi, comme différence. 

La dernière affirmation est la contraposée de la précédente. 
 
Théorème 1.8 : lien entre convergence d’une série c omplexe et celle de ses parties réelle et 

imaginaire  
Soit ∑ nz une série complexe, avec : ∀ n ∈ �, zn = an + i.bn, où : (an,bn) ∈ �2. 

Alors ∑ nz converge si et seulement si ∑ na et ∑ nb convergent et alors : ∑ ∑ ∑
+∞

=

+∞

=

+∞

=

+=
0 0 0

.
n n n

nnn biaz . 

Démonstration : 
En appelant (An), (Bn) et (Zn) les suites de sommes partielles associées, on a : 
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  ∀ n ∈ �, Zn = An + i.Bn, et le résultat découle du même résultat sur les suites complexes. 
 

2. Séries de réels positifs.  
 

Définition 3.1 : série réelle ou complexe absolumen t convergente  
On dit que la série ∑ nu  est absolument convergente si et seulement si la série ∑ nu  converge. 

 
Théorème 2.1 : premier critère de convergence pour les séries à termes réels positifs  

Soit ∑ nu une série à termes réels positifs.  

Elle converge, si et seulement si la suite (SN) de ses sommes partielles est majorée. 
Démonstration : 

La suite (SN) est croissante puisque : ∀ N ∈ �, SN+1 – SN = uN+1 ≥ 0. 
Donc la suite (SN) converge si et seulement si elle est majorée. 
 

Définition 3.2 : série semi-convergente  
On dit qu’une série réelle ou complexe est semi-convergente lorsqu’elle est convergente sans être 
absolument convergente. 

 
Théorème 2.2 : règle des majorants  

Soient ∑ nu et ∑ nv deux séries à termes réels positifs, telles que : 

  • ∑ nu converge, 

  • ∃ n0 ∈ �, ∀ n ≥ n0, vn ≤ un. 

Alors ∑ nv converge et : ∑∑
+∞

=

+∞

=
≤

00 nn
n

nn
n uv . 

Démonstration : 

Notons : ∀ N ≥ n0, UN = ∑
=

N

nn
nu

0

, et : VN = ∑
=

N

nn
nv

0

. On a alors : ∀ N ≥ n0, VN ≤ UN. 

Or la série (à termes positifs) ∑ nu converge, donc la suite de ses sommes partielles (même en 

commençant à n0) est majorée par un réel M, et : ∀ N ≥ n0, VN ≤ M. 
La suite (VN) est alors croissante et majorée par M donc convergente. 
En passant à la limite dans l’inégalité sur les sommes partielles, on en déduit la dernière inégalité. 
 

3. Séries réelles de signe quelconque, séries compl exes.  
 

Théorème 3.1 : lien entre convergence et absolue co nvergence  
Une série ∑ nu réelle ou complexe absolument convergente est convergente. Pas de réciproque. 

Dans ce cas, on a : ∑∑
+∞

=

+∞

=

≤
00 n

n
n

n uu . 

Démonstration : 
• Cas d’une série réelle. 
On peut poser : ∀ n ∈ �, un = |un| – (|un| – un), et on a alors : ∀ n ∈ �, 0 ≤ (|un| – un) ≤ |un|. 
Donc la série ∑ − )( nn uu  est convergente et comme différence de séries convergentes, ∑ nu aussi. 

De plus : ∀ N ∈ �, ∑∑
==

≤
N

n
n

N

n
n uu

00

, et en passant à la limite, on a bien : ∑∑
+∞

=

+∞

=

≤
00 n

n
n

n uu . 

• Cas d’une série complexe. 
On pose : ∀ n ∈ �, un = an + i.bn, avec : (an, bn) ∈ �2. 
On constate alors que : ∀ n ∈ �, |an| ≤ |un|, et : |bn| ≤ |un|. 
Donc les séries réelles ∑ na et ∑ nb sont absolument convergentes, donc convergentes (ce qu’on vient 

juste de démontrer), et finalement ∑ nu converge aussi. 
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En utilisant à nouveau l’inégalité triangulaire, on termine avec : ∀ N ∈ �, ∑∑
==

≤
N

n
n

N

n
n uu

00

, et en passant 

à la limite, on a toujours : ∑∑
+∞

=

+∞

=

≤
00 n

n
n

n uu . 

 
Théorème 3.2 : règle des équivalents  

Soient ∑ nu  et ∑ nv  deux séries réelles dont les termes de l’une gardent un signe constant à partir 

d’un certain rang et telles que : nn vu
∞+
~ . 

Alors : (∑ nu  converge) ⇔ (∑ nv converge). 

Démonstration : 
On sait donc que (un) et (vn) ont des termes de même signe à partir d’un certain rang, et donc quitte à 
les changer en leur opposée, on peut supposer qu’elles restent positives à partir d’un certain rang. 
On peut encore écrire : ∀ n ∈ �, un = vn.(1 + ε(n)), avec : 0)(lim =

+∞→
n

n
ε . 

Donc, pour : ε = 
2

1
, ∃ n0 ∈ �, ∀ n ≥ n0, |ε(n)| ≤ 

2

1
, et : 

2

1
 ≤ (1 + ε(n)) ≤ 

2

3
, puis : nu.

2

1
 ≤ vn ≤ nu.

2

3
. 

Par comparaison de séries à termes positifs, on en déduit donc l’équivalence de convergence des deux 
séries. 
 

Théorème 3.3 : séries de Riemann  
Soit : α ∈ �.  

La série ∑ αn

1
, avec converge, si et seulement si : α > 1. 

Démonstration : 

Soit : un,β = ββ )1(

11

+
−

nn
, avec β réel. 

La série ∑ β,nu  est télescopique de somme partielle : ∀ n ∈ �, Sn,β = 1 – β)1(

1

+n
, et elle converge si et 

seulement si : β ≥ 0. 

De plus : un,β 1
~

1
11.

1
+∞+

−



















 +−= β

β

β
β

nnn
, pour : β ≠ 0. 

Soit maintenant : α ≠ 1. Alors : βα α ,.
1

1
~

1
nu

n −∞+
, où on pose : β = α – 1 ≠ 0. 

Comme les séries considérées gardent un signe constant, on en déduit que ∑ αn

1
converge si et 

seulement si ∑ β,nu converge, soit : β > 0, ou encore : α > 1. 

Enfin, pour : α = 1, on a, pour les sommes partielles : ∀ N ≥ 1, S2.N – SN = 
2

1

.2

1
.

1.2

1

=≥∑
+= N

N
n

N

Nn

. 

Donc la suite (SN) ne peut converger puisque (S2.N – SN) ne tend pas vers 0, et (SN) tend vers +∞. 
 
Théorème 3.4 : règle des « grands O », des « petits  o » 

Soient ∑ nu et ∑ nv des séries complexes telles ∑ nv  soit absolument convergente. 

Si : un = O(vn) en +∞, alors ∑ nu  est aussi absolument converge. 

Si de même : un = o(vn) en +∞, alors ∑ nu  est aussi absolument converge. 

Démonstration : 
• Dans le premier cas, on sait que : ∃ M ∈ �, ∀ n ∈ �, nn vMu .≤ . 

Donc par comparaison de séries à termes positifs, si ∑ nv  converge, ∑ nu  converge aussi. 
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• Dans le second cas, on sait que : ∀ n ∈ �, nnn vu ε.= , où εn est une suite qui tend vers 0 en +∞. 

Donc : ∃ n0 ∈ �, ∀ n ≥ n0, 1≤nε , et : nn vu ≤ , ce qui nous ramène au premier cas. 

 

Théorème 3.5 : règle des « n α » 
Soit ∑ nu une série réelle ou complexe. 

Si (nα.un) tend vers 0, avec : α > 1, alors ∑ nu est absolument convergente. 

Démonstration : 

Il suffit de remarquer que les hypothèses se réécrivent en : un = 







αn

o
1

, en +∞ et que ∑
≥1

1

n nα est 

absolument convergente. 
 

Théorème 3.6 : règle de d’Alembert  

Soit ∑ nu une série réelle ou complexe non nulle à partir d’un certain rang, telle que : k
u

u

n

n

n
=+

+∞→

1lim . 

Si : • k < 1, alors ∑ nu converge absolument, 

   • k > 1, alors ∑ nu diverge grossièrement, (même si : k = +∞) 

   • k = 1, on ne peut a priori rien dire. 
Démonstration : 

• Cas : 0 ≤ k < 1. 
Soit : k < k’ < 1, et posons : ε = k’ – k > 0. 

Alors : ∃ n0 ∈ �, ∀ n ≥ n0, ε≤−+ k
u

u

n

n 1 , et : '1 kk
u

u

n

n =+≤+ ε , donc : nn uku '.1 ≤+ . 

Dans ce cas : ∀ n ≥ n0, 
n

n
nn

n kCuku )'.(.)'(
0

0 =≤ − , et la série étant majorée à partir d’un certain rang, 

par une série géométrique convergente est absolument convergente. 
• Cas : 1 < k (éventuellement infini). 
Comme précédemment, soit : 1 < k’ < k. 

Alors, en adaptant la démonstration précédente : ∃ n0 ∈ �, ∀ n ≥ n0,
0

0 .)'( n
nn

n uku −≥ , et le terme 

général de la série tend alors vers +∞ donc la série diverge grossièrement. 
 

Théorème 3.7 : exponentielle complexe  
Soit : z ∈ �.  

La série ∑ !n

z n

 est absolument convergente. 

On note alors : exp(z) =∑
+∞

=0 !n

n

n

z
, et cette fonction coïncide avec l’exponentielle réelle sur �. 

Démonstration : 
Pour z nul, la série est évidemment convergente. 
Pour : z ∈ �*, la série est absolument convergente en utilisant la règle de d’Alembert.  

Soit maintenant x un réel, non nul (car dans le cas où : x = 0, l’égalité : ex = ∑
+∞

=0 !n

n

n

x
 est immédiate). 

Alors la formule de Taylor sur [0,x] (ou [x,0] si : x < 0) garantit que : 

∀ N ∈ �, ∃ cx,N ∈ ]0,x[ (ou ]x,0[), ex = Nxc
NN

n

n

e
N

x

n

x
,.

)!1(!

1

0 +
+

+

=
∑ . 

Or comme cx,n reste dans l’intervalle ]0,x[ (ou ]x,0[), la quantité N,xce  est majorée par un réel M 
indépendant de n (par exemple : M = max(1,ex)). 
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Donc : ∀ N ∈ �, M
N

x

n

x
e

N
N

n

n
x .

)!1(!

1

0 +
≤−

+

=
∑ , et : x

N

n

n

N
e

n

x =∑
=+∞→

0 !
lim , du fait des croissances comparées de 

|x|N+1 et de (N+1)!, soit bien le résultat voulu.  
 

4. Séries réelles alternées.  
 

Définition 4.1 : série alternée  
On dit que la série de réels ∑ nu  est alternée si et seulement si ((-1)n.un) garde un signe constant. 

De manière équivalente si et seulement si le signe de un change à chaque n. 
 

Théorème 4.1 : critère spécial des séries alternées  
Soit ∑ nu une série alternée telle que : 

  • (|un|) est une suite décroissante, 
  • 0lim =

+∞→ n
n

u . 

Alors ∑ nu converge et sa somme est du signe u0.  

De plus : ∀ N ∈ �, 1
1

+

+∞

+=

≤= ∑ N
Nn

nN uuR . 

Démonstration : 
Quitte à remplacer toute la suite (un) par (-un), on peut supposer : u0 ≥ 0. 
Dans ce cas tous les termes u2n sont positifs et u2n+1 négatifs. 
Appelons (SN) la suite des sommes partielles associée à la série ∑ nu . 

Les suites (S2.N) et (S2.N+1) sont adjacentes.  
En effet : ∀ N ∈ �,  
  S2.(N+1) – S2.N = u2.N+2 + u2.N+1 = |u2.N+2| – |u2.N+1| ≤ 0, et :  
  S2.(N+1)+1 – S2.N+1 = u2.N+3 + u2.N+2 = |u2.N+2| – |u2.N+3| ≥ 0,  
Puis : ∀ N ∈ �, S2.N+1 – S2.N = u2.N+1, suite qui tend bien vers 0, car extraite d’une suite qui tend vers 0. 
Donc (S2.N) et (S2.N+1) convergent vers la même limite L, et finalement (SN) aussi. 
De plus : ∀ N ∈ �, 0 ≤ S1 ≤ S2.N+1 ≤ L ≤ S2.N+2 ≤ S2n.N≤ S0. 
Donc dans ce cas L est positif, soit du signe de u0, et aurait été négatif si on avait supposé u0 négatif. 
Enfin : ∀ N ∈ �,  
  |R2.N+1| = L – S2.N+1 ≤ S2.N+2 – S2.N+1 = u2.N+2 = |u2.N+2|, et : 
  |R2.N| = S2.N – L ≤ S2.N – S2.N+1 = – u2.N+1 = |u2.N+1|. 

 
5. Compléments.  
 

Théorème 5.1 : (hors programme)  séries de Bertrand  
Soit : (α,β) ∈ �2. 

La série ∑ βα )).(ln(

1

nn
 converge si et seulement si : α > 1, ou : (α = 1, β > 1). 

Démonstration : 
• Cas : α > 1. 
Soit : 1 < α’ < α.  

Alors : βαααβα )).(ln(

1
.

1

)).(ln(

1
'' nnnnn −= , et βαα )).(ln(' nn −  tend vers +∞, car : α – α’ > 0. 

Donc : 






=
'

1

)).(ln(

1
αβα n

o
nn

, en +∞, ce qui garantit la convergence de la série de Bertrand dans ce 

cas. 
• Cas : α = 1, β > 1. 
La série est à termes positifs donc elle converge si et seulement si la suite de ses sommes partielles est 
majorée. 
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Or : ∀ n ≥ 3, ∀ t ∈ [n – 1, n], ββ )).(ln(

1

)).(ln(

1

ttnn
≤ , et : ∫ −

≤
n

n tt

dt

nn 1 )).(ln()).(ln(

1
ββ . 

Puis :  ∀ N ≥ 3, 
1

2
12

3 ))2(ln(

1
.

1

1

))(ln(

1
.

1

1

)).(ln()).(ln(

1
−−

= −
≤









−
−=≤ ∫∑ ββββ ββ

N
NN

n ttt

dt

nn
. 

La suite des sommes partielles étant majorée, la série de Bertrand est donc convergente. 
• Cas : α = 1, β = 1. 

De la même façon : ∀ n ≥ 2, ∀ t ∈ [n, n+1], 
)).(ln(

1

)).(ln(

1

nntt
≤ , et : 

)).(ln(

1

)).(ln(

1

nntt

dtn

n
≤∫

+
. 

Puis : ∀ N ≥ 2, ∑∫
=

+
≤−+=

N

n

N

nn
N

tt

dt

2

1

2 )).(ln(

1
))2ln(ln())1ln(ln(

)).(ln(
, et la suite des sommes partielles 

tend vers +∞ donc la série de Bertrand diverge. 
• Cas : α = 1, β < 1. 

On minore alors en écrivant : ∀ n ≥ 2, β)).(ln(

1

)).(ln(

1

nnnn
≤ , et le terme général de la série est minoré 

par le terme général d’une série positive divergente, donc la série de Bertrand diverge. 
• Cas : α < 1. 

Puisque : ∀ n ≥ 2, β

α

βα ))(ln(
.

1

)).(ln(

1 1

n

n

nnn

−

= , et que : +∞=
−

+∞→ β

α

))(ln(
lim

1

n

n
n

, le terme général est là encore 

minoré à partir d’un certain rang par le terme général 
n

1
 d’une série positive divergente, et la série de 

Bertrand diverge. 
 

Définition 5.1 : produit de Cauchy de deux séries   
Soient ∑ nu et ∑ nv deux séries réelles ou complexes. 

On appelle produit de Cauchy de ces deux séries la série ∑ nw définie par : 

  ∀ n ∈ �, ∑ ∑
= =+

− ==
n

k nqp
qpknkn vuvuw

0

.. . 

 
Théorème 5.2 : convergence du produit de Cauchy de deux séries absolument convergentes  

Le produit de Cauchy de deux séries réelles ou complexes ∑ nu et ∑ nv absolument convergentes est 

une série ∑ nw absolument convergente et on a : 














= ∑∑∑
+∞

=

+∞

=

+∞

= 000

.
n

n
n

n
n

n vuw .  

Démonstration : 

• Pour : N ∈ �, ∑ ∑∑ ∑∑
= =+= =+=

≤=
N

n nqp
qp

N

n nqp
qp

N

n
n vuvuw

000

.. . 

La dernière somme porte en fait sur tous les couples : (p,q) ∈ �2, avec : p + q ≤ N. 
Or l’ensemble de ces couples est inclus dans {(p,q) ∈ �2, 0 ≤ p ≤ N, 0 ≤ q ≤ N}.  
Comme de plus les termes que l’on ajoute en remplaçant le premier ensemble d’indices par le second 
sont tous positifs, on a donc : 

  ∀ N ∈ �, 



















≤



















=≤≤ ∑∑∑∑∑∑∑ ∑∑

+∞

=

+∞

==== == =+= 00000 000

....
q

q
p

p

N

q
q

N

p
p

N

p

N

q
qp

N

n nqp
qp

N

n
n vuvuvuvuw . 

La suite des sommes partielles de la série à termes positifs ∑ nw  étant majorée, la série ∑ nw  

converge et ∑ nw est absolument convergente. 

• Puis : ∀ N ∈ �, ∑ ∑∑
= =+=

=
N

n nqp
qp

N

n
n vuw

.2

0

.2

0

. , et l’ensemble des couples concernés par cette dernière somme 

contient : E’N = {(p,q) ∈ �2, 0 ≤ p ≤ N, 0 ≤ q ≤ N}, donc est la réunion de E’N et d’un ensemble EN’’. 
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Donc : ∀ N ∈ �, ∑∑∑∑∑∑∑
∈==∈= ==

+


















=+=

'),(00'),(0 0

.2

0

....
NN Eqp

qp

N

q
q

N

p
p

Eqp
qp

N

p

N

q
qp

N

n
n vuvuvuvuw . 

Enfin : ∀ (p,q) ∈ EN’, p ≥ N+1, et : q ≥ N+1. 

Donc : 



















=≤≤ ∑∑∑ ∑∑∑

∞+

+=

∞+

+=

∞+

+=

∞+

+=∈∈ 111 1'),('),(

....
Nq

q
Np

p
Np Nq

qp
Eqp

qp
Eqp

qp vuvuvuvu
NN

, 

ces majorations étant justifiées par le fait que les séries majorantes sont toutes convergentes. 
Or le produit qui apparaît à la fin est le produit de deux restes d’ordre n de séries convergentes, et donc 
ce produit tend vers 0 quand n tend vers +∞, et la valeur absolue de la somme majorée aussi. 

Finalement : ∑∑∑∑
∈+∞→

+∞

=

+∞

==+∞→
+


















=

'),(00

.2

0

.lim.lim
NEqp

qp
n

q
q

p
p

N

n
n

N
vuvuw , d’où : 




















= ∑∑∑

+∞

=

+∞

=

+∞

= 000

.
q

q
p

p
n

n vuw . 

 
Théorème 5.3 : constante d’Euler  

La somme partielle HN de la série harmonique ∑
≥1

1

n n
admet un développement asymptotique en +∞ qui 

s’écrit : )1()ln(
1

1

oN
n

N

n

++=∑
=

γ , en +∞, où γ vaut environ : γ ≈ 0.577, et est appelée constante d’Euler. 

Démonstration :  

On pose : ∀ N ≥ 1, uN = )ln(
1

1

N
n

N

n

−∑
=

, et : vN = uN+1 – uN. 

Alors la série ∑
≥1n

nv est télescopique. 

De plus : vN = 






+−=






++−






 +=






 +−
+

−

2222

1
1

.2

11

.2

111
1.

11
1ln

1

1

N
o

NN
o

NNNNNN
. 

La série ∑
≥1N

Nv est alors absolument convergente et par conséquent la suite (uN) converge. 

Si on note cette limite γ, on peut alors écrire : uN = γ + ε(N), où ε est une suite qui tend vers 0 en +∞. 
On en déduit bien le développement asymptotique de HN annoncé. 
 

Théorème 5.4 : formule de Stirling  

En +∞, on a : nenn nn ..2..~! π−

∞+
. 

Démonstration : 

Soit, pour : n ∈ �*,
nn

en
u

n

n

n

1
.

!.= , et : vn = ln(un+1) – ln(un). 

La série ∑ nv est télescopique et converge si et seulement la suite (ln(un)) converge. 

Or : ∀ n ∈ �*, vn = 






 +−+








+
=







 +

n

n
e

n

n
n

u

u

n

n 1
ln.

2

1
)ln(

1
ln.ln 1 . 

On utilise alors un développement limité en 
n

1
 à l’ordre 2 en +∞, et : ∀ n ∈ �*, vn = 







+






−
22

11
.

12

1

n
o

n
. 

La série ∑ nv est donc à termes négatifs à partir d’un certain rang et son terme général est équivalent 

en +∞ à celui d’une série de Riemann convergente (on peut aussi la voir comme la somme de deux 
séries convergentes ou absolument convergentes). 
Donc ∑ nv converge vers une limite L. 

Par conséquent, (ln(un)) converge vers [L + ln(u1)], et (un) converge vers un réel strictement positif K égal 
à l’exponentielle de la limite précédente, du fait de la continuité de l’exponentielle sur �. 

On en déduit que : un
∞+
~ K, puis : Knenn nn ...~! −

∞+
. 

La valeur de K enfin, peut être obtenue en passant par les intégrales de Wallis.  
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On peut poser pour cela : ∀ n ∈ �, ∫= 2

0

2 ).(sin
π

dttI n
n . 

On montre que : 
n

I n

π
.

2

1
~
∞+

, puis que : 
2

.
!.2

)!2(
22

π
n

n
I

nn = .  

On en déduit finalement : K = π.2 . 


