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Séries numériques. Chap. 02 : cours complet.

1. Séries de réels et de complexes.

Définition 1.1 : série de réels ou de complexes
Soit (u,) une suite de réels ou de complexes.

N
On appelle série de terme géneral u,, la suite (Sy) définie par : ONON, Sy = Zun .
n=0

La suite (S,) est aussi appelée suite des sommes partielles de la série.
On la note encore YU, .

n=0

Définition 1.2 : série convergente ou divergente
Soit (u,) une suite de réels ou de complexes.
On dit que la série de terme général u, converge, si et seulement si la suite (S,) est convergente.

+0o

Salimite se note alors: S= lim S = ZUn , et est appelée « somme de la série ».

—
N = e n=0

Si une série n'est pas convergente, on dit qu’elle diverge.

En cas de convergence, on appelle reste d’'ordre N de la série la quantité : Ry =S-S5 = ZUn , etla
n=N+1

suite (Sy) tend vers 0.

Remarque :

Les premiers termes n'interviennent pas pour la convergence d’'une série.

Tous les critéres de convergence restent donc valables si les conditions demandées sont remplies « a
partir d’'un certain rang ».

En cas de convergence, la valeur des premiers termes en revanche influe sur la somme de la série.

Théoréme 1.1 : condition nécessaire de convergence
Si la série réelle ou complexe ZUn converge, alors la suite (u,) tend vers 0 a I'infini.

Démonstration :
Si la série Zun converge, alors la suite (Sy) de ses sommes partielles par définition converge, donc la

suite (Sy — Sn.1)n=1 tend vers 0.
Or:[ON=1, Sy— Sni = Uy, et la suite (u,) tend vers 0.

Théoréme 1.2 : critere de divergence grossiere
Si la suite réelle ou complexe (u,) ne tend pas vers 0, alors la série ZUH diverge.

Démonstration :
C’est la contraposée de I'implication précédente.

Théoreme 1.3 : série géométriqgue complexe

Soit: z 0O C.
Alors Z z" converge si et seulement si: |z| <1, et dans ce cas, on a: i z" = 1le .
n=0
Démonstration :
Pour : z = 1, la série géométrique diverge, puisque son terme général ne tend pas vers 0.
Pour:zOC,z#1,ona:ONON, ZN:Z” =%, et cette suite converge si et seulement si : |z| < 1.
n=0

. +00 ) 1_ Zn+1 1
De plus, dans ce cas, la somme de la série vaut : 2 z" = lim 1— = 1—
- n- +oo —_ Z —_ Z
n=0
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Définition 1.3 : série télescopique
Une série réelle ou compleerun est dite télescopique lorsque son terme général peut se mettre sous
la forme : O n ON, u, = a1 — a,, OU (a,) est une suite de réels ou de complexes.

Théoréme 1.4 : convergence d’une série télescopique
Une série télescopique réelle ou complexe ZUn ,avec: O nON, u, = a1 — a,, converge si et

seulement si (a,) est une suite convergente.

+00
Danscecas,ona: (lima,)—-a, = ZUn :
n- +oo =0

Démonstration :
Soit (S,) la suite des sommes partielles de la série Zun .

Alors : O n ON, S, = a1 — a0, et I'équivalence ainsi que la valeur de la limite en découle.

Théoréme 1.5 : combinaison linéaire de séries conve  rgentes
Soient Y u, et Y v, des séries réelles ou complexes convergentes, et : (a,8) 0 R* ou C*.

Onpose:OnON,w,=a.u, + B.v,.

+o0o +o0 +o0
Alors ) w, est une série convergente eton a: zown = U-Z,)Un +,[>’.Z;)vn :
n= n= n=

Démonstration :
En notant (Uy), (Vy), (Wy) les suites de sommes partielles des séries > u,, DV, , et > W, ,ona:

OnON, W, =0a.U, +B.V,, et le résultat se déduit du résultat identique sur les suites.

Théoréme 1.6 : équivalence de convergence en cas de  produit par un scalaire non nul
Soit ) u, une série réelle ou complexe, o un scalaire réel ou complexe non nul.

+00 +00
Alors Zun converge si et seulement si ZU.un , et dans ce cas : ZG.un = a.z u, .
n=0 n=0

Démonstration :
e Si ZUn converge alors ZU.un aussi comme cas particulier du théoréme précédent.

. : - 1
e Si ZU.un converge, alors Zun aussi en la multipliant par —.
a

Théoréme 1.7 : cas de trois séries liées par une so  mme
Soient ZUn et ZVn des séries réelles ou complexes, et : O n ON, w, = u, + V.
Alors si deux des trois séries » U,, DV, , Y W, convergent, la troisiéme converge aussi.
Si 'une diverge, au moins I'une des deux autres diverge.

Démonstration :
Si > u,et > v, convergent, alors » W, aussi comme somme de deux séries convergentes.

Si ) u, (par exemple) et Y w, convergent, alors »_v, aussi, comme différence.
La derniere affirmation est la contraposée de la précédente.

Théoréme 1.8 : lien entre convergence d’'une série ¢ omplexe et celle de ses parties réelle et
imaginaire
Soit Y z, une série complexe, avec : On O N, z, = a, + i.b, 0l : (an,by) O R%.

+00 +00 +00
Alors )"z, converge si et seulement si Y a, et > b, convergent et alors : zozn = Z‘)an + |.Z;)bn :
n= n= n=

Démonstration :
En appelant (A,), (By) et (Z,) les suites de sommes patrtielles associées, on a :
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OnON, Z,=A, +i.B,, et le résultat découle du méme résultat sur les suites complexes.

2. Séries de réels positifs.

Définition 3.1 : série réelle ou complexe absolumen  t convergente
On dit que la série Zun est absolument convergente si et seulement si la série Z|un| converge.

Théoréme 2.1 : premier critére de convergence pour les séries a termes réels positifs
Soit »_u, une série & termes réels positifs.

Elle converge, si et seulement si la suite (Sy) de ses sommes partielles est majorée.

Démonstration :
La suite (Sy) est croissante puisque : N O N, Sy+1 — Sy = Uy 2 0.
Donc la suite (Sy) converge si et seulement si elle est majorée.

Définition 3.2 : série semi-convergente

On dit qu'une série réelle ou complexe est semi-convergente lorsqu’elle est convergente sans étre
absolument convergente.

Théoréme 2.2 : regle des majorants
Soient Zun et Zvn deux séries a termes réels positifs, telles que :

* > u, converge,
e Ong ON, OnNn = ng, Vs < U

+o0

Alors )" v, converge et : ivn <>u,.

n=n, n=n,

Démonstration :
N N
Notons : ON=no, Uy= D U, et:Vy= D v,.Onaalors: 0N =2 ng, Vy < Uy
n=ny n=ng
Or la série (a termes positifs) Zun converge, donc la suite de ses sommes partielles (méme en

commencgant a no) est majorée par un réel M, et : 0 N = ng, Vy < M.
La suite (V) est alors croissante et majorée par M donc convergente.
En passant a la limite dans l'inégalité sur les sommes partielles, on en déduit la derniere inégalité.

3. Séries réelles de signe quelconque, séries compl EXES.

Théoreme 3.1 : lien entre convergence et absolue co  nvergence
Une série ZUH réelle ou complexe absolument convergente est convergente. Pas de réciproque.

+00

2.,

n=0

+00

<> |uyl-

n=0

Dans ce cas, on a:

Démonstration :
» Cas d'une série reelle.
On peut poser : O n ON, u, = [uy] = (Jun] — un), etonaalors : On ON, O < (Jun] — uUn) < |ug.
Donc la série Z(|un| —u,) est convergente et comme différence de séries convergentes, ZUH aussi.

N +00
>, <Yul.
n=0 n=0

* Cas d’'une série complexe.

Onpose:OnON, u, = a, +i.by, avec : (a,, by O R

On constate alors que : O n O N, |ap] < |uql, et : |by] < |un.

Donc les séries réelles Z a, et an sont absolument convergentes, donc convergentes (ce qu’on vient

+00

2.y

n=0

N
< Y |u,|. eten passant a la limite, on a bien :
n=0

De plus: ON O N,

juste de démontrer), et finalement Zun converge aussi.
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En utilisant a nouveau l'inégalité triangulaire, on termine avec : [0 N [ N,

N
2.,
n=0

N
< Z|un|, et en passant
n=0

+o0

2. Uy

n=0

+o0

<> uy|-
0

n=

a la limite, on a toujours :

Théoreme 3.2 : régle des équivalents
Soient ZUn et ZVn deux séries réelles dont les termes de I'une gardent un signe constant a partir

d’un certain rang et telles que : u, ~V,,.

+00

Alors : (Zun converge) = (Z:Vn converge).

Démonstration :
On sait donc que (uy) et (v,) ont des termes de méme signe a partir d'un certain rang, et donc quitte a
les changer en leur opposée, on peut supposer qu’elles restent positives a partir d’un certain rang.

On peut encore écrire : O n ON, u, = v,.(1 +&(n)), avec : lim £(n) =0.
N +oo

n n*

1 1 1 3 1 3
Donc, pour:e= —,Ono N, On=ng, [en)|< —,et: — <(1+gn))<—,puis: —.U, vy < —U
p 5 0o o|()|2 2( ())2p > S5
Par comparaison de séries a termes positifs, on en déduit donc I'équivalence de convergence des deux

séries.

Théoreme 3.3 : séries de Riemann
Soit: a OR.

L 1 : :
La série Z—a avec converge, si et seulement si: o > 1.
n

Démonstration :
Soit : upg = — —— —, avec P réel.
" nf (n+1)”
La série ZUM est télescopique de somme partielle : DnON, S,g=1— W’ et elle converge si et
' n+
seulementsi: (3=0.
-8
_ 1 1 B :
De plus : ung _n_ﬁ 1—(1+Ej ;W' pour : B £0.
: : 1 1 .
Soit maintenant : a # 1. Alors : — ~——U, 5, ouonpose:B=a-1#0.
n“+~ag-1 "

Comme les séries considérées gardent un signe constant, on en déduit que Z—a converge si et
n

seulement si ZUM converge, soit : B > 0, ou encore : o > 1.

Donc la suite (Sy) ne peut converger puisque (S;n — Sy) ne tend pas vers 0, et (Sy) tend vers +oo.

Théoreme 3.4 : regle des « grands O », des « petits 0 »
Soient Y u, et Y v, des séries complexes telles » v, soit absolument convergente.

Si: u, = O(v,) en +w, alors U_ est aussi absolument converge.
n

Si de méme : u, = o(Vv,) en +co, alors ZUn est aussi absolument converge.

Démonstration :
« Dans le premier cas, on saitque : DM O R, OnON, |u,|<MJv,|.

Donc par comparaison de séries & termes positifs, si Y |v, | converge, ' |u | converge aussi.
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* Dans le second cas, on saitque : OnON, u, =V,.£,, ou &, est une suite qui tend vers 0 en +oo,

Donc: Ono ON, On=no, |6, <1, et: |uy|<|v,|, ce qui nous ramene au premier cas.

Théoreme 3.5 : régledes «n 7 »

Soit Y u, une série réelle ou complexe.

Si (n“.u,) tend vers 0, avec : a > 1, alors Zun est absolument convergente.

Démonstration :

. R Lo 1 1
II'suffit de remarquer que les hypotheses se réécriventen : u, = 0 —- |, en +o et que Z—a est
n nx1

absolument convergente.

Théoréme 3.6 : régle de d’Alembert

un+1

Soit ZU une série réelle ou complexe non nulle a partir d’'un certain rang, telle que : lim
u,

n- +oo

Si: * k<1, alors ZUn converge absolument,
* k>1, alors Zun diverge grossiérement, (méme si : k = +o)
* k=1, on ne peut a priori rien dire.

=k.

Démonstration :
e Cas:0<k<1.
Soit:k<k'<1, etposons:e=k —k>0.
u
Alors : Ong ON, Onzng |- -k <&, et: |- <e+k=k, donc: |u,.,[<klu,|.
n un

n-ro |

Dans ce cas : 0 n=no, |u,|< (k')

par une série géométrique convergente est absolument convergente.
e Cas : 1 <k (éventuellement infini).
Comme précédemment, soit : 1 <k’ <k.

=C.(k")", et la série étant majorée a partir d’'un certain rang,

Alors, en adaptant la démonstration précédente : Ony O N, O n = n0,|u | > (k')" | , et le terme
général de la série tend alors vers +o donc la série diverge grossiérement.
Théoréme 3.7 : exponentielle complexe
Soit: z 0O C.
n
- z
La série Z—I est absolument convergente.
n!
+00 n
On note alors : exp(z) = Z— et cette fonction coincide avec I'exponentielle réelle sur R.
n=0

Démonstration :
Pour z nul, la série est évidemment convergente.
Pour : z 0 C*, la série est absolument convergente en utilisant la régle de d’Alembert.

n

Soit maintenant x un réel, non nul (car dans le cas ou : x = 0, I'égalité : e* Z— est immédiate).
n=0

Alors la formule de Taylor sur [0,x] (ou [x O] si : X < 0) garantit que :
N+1

ONON, Ocyy 010,X[ (ou Ix,0]), € X X o,
~ 0]0,x[ (ou 1x,0) non! (N +1)]

Or comme ¢, reste dans l'intervalle ]0,x[ (ou ]x,0[), la quantité ™" est majorée par un réel M
indépendant de n (par exemple : M = max(1,e”).
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N yn |XIN+1 N yn
e* - Z— <— M ,et: lim 2— = ¢e", du fait des croissances comparées de
n=0 nl (N +1)' N — 4o n=0 n'

Ix|N** et de (N+1)!, soit bien le résultat voulu.

Donc : ON O N,

4. Séries réelles alternées.

Définition 4.1 : série alternée
On dit que la série de réels ZUn est alternée si et seulement si ((-1)".u,) garde un signe constant.

De maniere équivalente si et seulement si le signe de u, change a chaque n.

Théoréme 4.1 : critére spécial des séries alternées
Soit Z u, une série alternee telle que :

* (Jun]) est une suite décroissante,
e limu, =0.

n- +oo

Alors Zun converge et sa somme est du signe uy.

+00
.Uy

n=N+1

De plus: ONON, |Ry|=

S|UN+1

Démonstration :
Quitte a remplacer toute la suite (up) par (-u,), on peut supposer : up = 0.
Dans ce cas tous les termes u,, sont positifs et u,,.; Négatifs.
Appelons (Sy) la suite des sommes partielles associée a la série Zun .

Les suites (S,n) et (San+1) SONt adjacentes.
En effet: ON ON,
Son+1) — San = Uonsz + Uzner = [Uznsz| — |Uznea| <O, €t
So s+ — Saner = Uansa + Uznsz = [Uznsz| — |Uznes| 2 0,
Puis : OO N O N, S,n+1 — San = Uane+1, SUite qui tend bien vers O, car extraite d’'une suite qui tend vers O.
Donc (S,n) et (San+1) convergent vers la méme limite L, et finalement (Sy) aussi.
De pIUS :ONO N, 0< Sl < SZIN+1 <L< SZ.N+2 < SZn.NS So.
Donc dans ce cas L est positif, soit du signe de uy, et aurait été négatif si on avait supposé uy négatif.

Enfin : ON ON,
|IR2Nn+1] = L — Soner < Sonez — Saner = Uansz = |Uansz|, €1
|IRon| = Son— L < Son—Sonet = — Uz = |Uaneal-

5. Compléments.

Théoréme 5.1 : (hors programme) seéries de Bertrand
Soit : (a,p) O R%

La série z converge si et seulementsi:a>1,ou: (a=1,03>1).

n“.(In(n))”

Démonstration :
eCas:a>1.
Soit:1<a’<a.
1
N (In(n))?
1 . : L
—- |, en +oo, ce qui garantit la convergence de la série de Bertrand dans ce

N T O(
" n?.(In(n))” n

1 o
Alors : — et N“.(In(n))” tend vers +w, car: a — o’ > 0.
n

n“.(In(n))”
Donc

cas.

eCas:a=1,3>1.

La série est a termes positifs donc elle converge si et seulement si la suite de ses sommes partielles est
majorée.
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1 1 1 n dt
< et <[ ——.
n.(n(n))” — t.(n())” n.(In(n))? = r1t.(In(t))”

N N
puis: ON23, Y —— <" LS PR SR N R S
Zn(n(m)” 2 t(n()” A-1(n®)"" ],  B-1(In(2)”
La suite des sommes partielles étant majorée, la série de Bertrand est donc convergente.
eCas:a=1,B=1.

Or:0On=3,0t0O[MN-1,n],

De laméme facon: O n=2, 0t0O[n, n+1],

1 1 et: [ dt _ 1
t.(In@) ~ n(nn))"  t(n®)  n(n(n)

N
dt =In(In(N +1)) —In(In(2)) < z; et la suite des sommes partielles
a2 n.(In(n))

t.(In(t))
tend vers +oo donc la série de Bertrand diverge.
eCas:a=1,B<1

) N+1
Puis: ON>2, L

1 < 1
n.(n(n)) ~ n.(n(n))? "’
par le terme général d’'une série positive divergente, donc la série de Bertrand diverge.
*Cas:a<1.

On minore alors en écrivant: 0 n = 2,

et le terme général de la série est minoré

. 1 1 n*“ . nte
Puisque : 0 n =2, == que: lim ———
n n-+ (In(n))”

- 5= 7 et = +oo0 , le terme général est la encore
n“.(In(n)) (In(n))

minoré a partir d’'un certain rang par le terme général — d’une série positive divergente, et la série de
n

Bertrand diverge.

Définition 5.1 : produit de Cauchy de deux séries
Soient Y u, et Y v, deux séries réelles ou complexes.

On appelle produit de Cauchy de ces deux séries la série an définie par :

n
OnON, W, => UV, = DUV,
k=0 p+g=n

Théoréme 5.2 : convergence du produit de Cauchy de deux séries absolument convergentes
Le produit de Cauchy de deux séries réelles ou complexes Zun et Zvn absolument convergentes est

+0o +0o +0o
une série )W, absolument convergente etona: » W, = (z un].(Zan.
n=0 n=0

n=0

Démonstration :
N

« Pour : NON, i|wn| =>
n=0

n=0

N
< z z upqu‘ .

n=0 p+g=n

:E:thvh
p+g=n

La derniére somme porte en fait sur tous les couples : (p,q) O N? avec : p + q < N.

Or 'ensemble de ces couples est inclus dans {(p,gq) ON? 0<p<N, 0<q<N}.

Comme de plus les termes que I'on ajoute en remplacant le premier ensemble d’'indices par le second
sont tous positifs, on a donc :

oo S <3 S <33l S | Sl < Sl | S

n=0 p+g=n

La suite des sommes partielles de la série a termes positifs Z|Wn étant majorée, la série Z|Wn|

converge et ZWn est absolument convergente.

2.N 2.N

e Puis: ONON, ZWn = 2 Zup.vq , et 'ensemble des couples concernés par cette derniere somme
n=0 n=0 p+qg=n

contient : E'y = {(p,q) ON?, 0<p <N, 0<q< N}, donc est la réunion de E’y et d’'un ensemble Ey”.

Chapitre 02 : Séries numériques — Cours complet. -8-



Donc : 0N O N, %Wn :iiup.vq + Uy, :(ZUP}(ivqj+ dugy, .

n=0 p=0g=0 (p.a)OEN" p=0 q=0 (p.a)OEN"
Enfin: O (p,q) O EN, p=N+1, et: q= N+1.
+00 +00 +00 +00
Supvifs Slulels 3 ol =| Sl S |
(p.a)OE’ (p.a)OEN’ p=N+1g=N+1 p=N+1 g=N+1

ces majorations étant justifiées par le fait que les séries majorantes sont toutes convergentes.
Or le produit qui apparait a la fin est le produit de deux restes d'ordre n de séries convergentes, et donc
ce produit tend vers 0 quand n tend vers +o, et la valeur absolue de la somme majorée aussi.

Finalement : lim %Wn :(iup}(ivqj+ lim > u,v,, dou: iwn :(iupj{ivqj.
N n=0 p=0 q=0 N oo n=0 p=0 q=0

Donc :

-+
® (p.)Ey’

Théoréme 5.3 : constante d’Euler

La somme partielle Hy de la série harmonique Z—admet un développement asymptotique en +co qui
n21
N1
s'écrit : Z— =In(N) + y+0(0), en +eo, ot y vaut environ : y= 0.577, et est appelée constante d’Euler.
n

n=1

Démonstration :
N

1

Onpose:ON=1,uy= Y ==In(N), et: vy = Uy — Uy.
n=1 n

Alors la série ZVn est télescopique.

nx1

1 1) 1 1" 1 1 1) 1 1
De plus:vy= ——-In1+—|=—|1+—| —-—+ ~+0 — |=- S0 |.
N +1 N) NU N N 2N N 2N N

La série ZVN est alors absolument convergente et par conséquent la suite (uy) converge.

N=1
Si on note cette limite y, on peut alors écrire : uy =y + €&(N), ou € est une suite qui tend vers 0 en +co,
On en déduit bien le développement asymptotique de Hy annoncé.

Théoréme 5.4 : formule de Stirling
En+w,0na: nl~n"e"A27mn.

Démonstration :
: ne" 1
Soit, pour : n O N*u, = —, et: Vv, = In(Un+1) — IN(Up).

n" n

La série an est télescopique et converge si et seulement la suite (In(u,)) converge.

Or:0OnON* v,=In Yna | - n_m[ijﬂn(e)—l_m[n_’qj_
n+1 2 n

uﬂ

n 12) n? n?
La série Zvn est donc a termes négatifs a partir d’'un certain rang et son terme général est équivalent

- . - 1. 1)1 1
On utilise alors un développement limité en — a l'ordre 2 en +oo, et : 0 n O N*, v, = [——j— + 0[—).

en +o a celui d’'une série de Riemann convergente (on peut aussi la voir comme la somme de deux
séries convergentes ou absolument convergentes).

Donc v, converge vers une limite L.

Par conséquent, (In(u,)) converge vers [L + In(u,)], et (u,) converge vers un réel strictement positif K égal
a I'exponentielle de la limite précédente, du fait de la continuité de I'exponentielle sur R.

On en déduit que : u, ~ K, puis : n'~n"e™"/nK .

La valeur de K enfin, peut étre obtenue en passant par les intégrales de Wallis.

Chapitre 02 : Séries numériques — Cours complet. -9-



m
On peut poser pourcela: OnON, I, = '[02 Sin® (t).dt .
@ n

1 | .
Onmontreque: |, ~—.,/—,puisque: |, =—=—.—.
n

M D S 2?2

On en déduit finalement : K = «/2.77.
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