TD 20 Dimension finie.

I. Exercices.

Exercice 1. Soient E un espace vectoriel complexe et $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E. Déterminer si les familles suivantes forment une base de E:

-
$$\mathcal{F}_1 = (e_1, e_1 + e_2, e_1 + e_3, \dots, e_1 + e_n)$$

-
$$\mathcal{F}_2 = (e_1 + e_2, e_2 + e_3, \dots, e_{n-1} + e_n)$$

-
$$\mathcal{F}_3 = (e_1 + e_2, e_2 + e_3, \dots, e_{n-1} + e_n, e_n + e_1)$$

-
$$\mathcal{F}_4 = (e_1, e_1 + e_2, e_1 + e_2 + e_3, \dots, e_1 + e_2 + \dots + e_n)$$

Exercice 2. Dans l'espace vectoriel $\mathcal{L}(\mathbf{R}^3, \mathbf{R})$ des formes linéaires sur \mathbf{R}^3 , on considère (f_1, f_2, f_3) définie par :

$$\forall (x, y, z) \in \mathbf{R}^3, \ f_1(x, y, z) = x - y - z, \ f_2(x, y, z) = 2x - y - z, \ f_3(x, y, z) = x + 2y + z$$

La famille (f_1, f_2, f_3) est-elle libre ou liée?

Exercice 3. Dans \mathbf{R}_4 , on considère les sous-espaces vectoriels suivants :

$$F = \{(x, y, z, t) \mid x + y = 0 \text{ et } z = 2t\} \text{ et } G = \{(x, y, z, t) \mid y + z + t = 0\}.$$

Déterminer une base et la dimension de F, G, $F \cap G$ et F + G.

Exercice 4. Soit E un espace vectoriel, puis f et g deux endomorphismes dans $\mathcal{L}(E)$ tels que :

$$E = Ker(f) + Ker(g) = Im(f) + Im(g)$$

On suppose que l'espace vectoriel E est de dimension finie. Montrer à l'aide des dimensions que les deux sommes précédentes sont directes.

Exercice 5. Soient H_1 et H_2 deux hyperplans distincts d'un espace vectoriel de dimension n.

- **1.** Montrer que $H_1 + H_2 = E$.
- **2.** En déduire la dimension de $H_1 \cap H_2$.
- **3.** Soit F un sous-espace vectoriel de E vérifiant $F \not\subset H_1$, montrer que F et H_1 sont supplémentaires dans E. on précisera un encadrement de la dimension de $F + H_1$.

Exercice 6.

1. Soit E un \mathbf{K} espace vectoriel de dimension $n, n \in \mathbf{N}$.

Montrer que : $\forall (u, v) \in \mathcal{L}(E), rg(u+v) \leq rg(u) + rg(v).$

- **2.** Soit E un K espace vectoriel de dimension finie, soit F un sous-espace vectoriel de E, soit $u \in \mathcal{L}(E)$, on note u_0 la restriction de u à F.
- a) Montrer que $Ker(u_0) = F \cap Ker(u)$.
- **b)** Déduire que : $dim(u(F)) = dim(F) \Leftrightarrow F \cap Ker(u) = \{0\}.$
- 3. Soit E un \mathbf{K} espace vectoriel de dimension finie n, soit u et v deux endomorphismes de E tels que $u \circ v = 0$
- a) Montrer que $Im(v) \subset Ker(u)$.
- **b)** Déduire que $rg(u) + rg(v) \le n$.

II. Problèmes Sous-espaces vectoriels, calcul de bases et de dimension.

Problème 1.

Soit $E = \mathbf{R}^3$ et t un paramètre réel quelconque.

1. Soit F_t le sous-ensemble de E constitué des vecteurs $(x,y,z) \in E$ vérifiant :

$$\begin{cases} (2-t)x + 2y - 2z = 0\\ x + (1+t)y - z = 0 \end{cases}$$

- a) Montrer que F_t est un sous-espace vectoriel de E.
- b) Déterminer la dimension et une base de F_t . On discutera suivant les valeurs de t.
- c) Montrer en particulier que si $t \neq 0$ alors $F_t = Vect((-2, 1, t 1))$.
- **2.** Soit $H_t = Vect((t, 0, 1), (0, 1 t, 1)).$
- a) Quelle est la dimension de H_t ?
- b) Donner un supplémentaire de H_t dans E.
- c) Déterminer la dimension de $H_t \cap F_t$ en fonction de t. Pour quelles valeurs de t, H_t et F_t sont-ils supplémentaires?

Problème 2.

Soit $n \geq 3$ et $E = \mathbf{R}_{n-1}[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n-1.

1. Quel est la dimension de E?

Soient a et b deux réels distincts.

2. Montrer que $F_a = \{P \in E \mid P(a) = 0\}, F_b = \{P \in E \mid P(b) = 0\}$ et $F = \{P \in E \mid P(a) = P(b) = 0\}$ sont des sous-espaces vectoriels de E.

2

3. Montrer que la famille

$$\mathcal{B}_a = ((X - a), X(X - a), \dots, X^{n-2}(X - a))$$

est une base de F_a .

- **4.** Déterminer une base de F.
- **5.** Montrer qu'il existe deux réels $(\alpha, \beta) \in \mathbf{R}^2$ tels que $1 = \alpha(X a) + \beta(X b)$
- **6.** En déduire que $E = F_a + F_b$
- **7.** F_a et F_b sont-ils supplémentaires dans E?
- 8. Déterminer un supplémentaire de F_a dans E.

Problème 3. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

On considère l'endomorphisme définie par :

$$f(e_1) = 13e_1 + 12e_2 + 6e_3$$
, $f(e_2) = -8e_1 - 7e_2 - 4e_3$, $f(e_3) = -12e_1 - 12e_2 - 5e_3$

- 1. Montrer que les ensembles $F = \{u \in \mathbf{R}^3 \mid f(u) = u\}$ et $G = \{u \in \mathbf{R}^3 \mid f(u) = -u\}$ sont des sous-espaces vectoriels de \mathbf{R}^3 .
- **2.** Déterminer l'expression analytique de f.
- **3.** Déterminer une base de F et une base de G.
- **4.** Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .

Problème 4. Concours

Soit n un entier naturel, $n \geq 2$, et $E = \mathbf{R}_n[X]$ l'espace vectoriel des polynômes réels de degrés au plus égaux à n.

On considère l'application $f: E \to E$ définie par :

$$\forall P \in E, f(P) = P(X+1) + P(X-1) - 2P(X)$$

1.a) \heartsuit Montrer qu'une famille $(Q_k)_{k \in [1;r]}$ de polynômes tous non nuls et qui vérifient :

$$\forall k \in [1; r-1], \ deg(Q_k) < deg(Q_{k+1})$$

est une famille libre.

- **1.b)** Vérifier que f est linéaire.
- 2. Déterminer le sous-espace Im(f) (en précisant rg(f)) et le sous-espace vectoriel Ker(f).

Indication: On pourra former $f(X^k)$ pour $k \in [0; n]$ et préciser son degré.

3. Soit $Q \in Im(f)$. Montrer qu'il existe un unique élément P de E tel que :

$$f(P) = Q$$
 et $P(0) = P'(0) = 0$

Problème 5.

On considère l'application $\varphi: \mathbf{C}(\mathbf{R},\mathbf{R}) \to \mathbf{C}(\mathbf{R},\mathbf{R})$ définie par :

$$\forall f \in \mathbf{C}(\mathbf{R}, \mathbf{R}), \, \forall x \in \mathbf{R}, \, \varphi(f)(x) = \int_x^{x+1} f(t) \, dt.$$

- 1. Montrer que φ est un endomorphisme de $\mathbf{C}(\mathbf{R},\mathbf{R})$.
- 2. Soit $f \in \mathbf{C}(\mathbf{R}, \mathbf{R})$, montrer que $\varphi(f)$ est dérivable sur \mathbf{R} .
- **3.** φ est-elle surjective?
- **4.a)** Déterminer $\varphi(f_1)$ lorsque $f_1: x \longmapsto \sin(2\pi x)$.
- **4.b)** Déterminer $\varphi(f_2)$ lorsque $f_2: x \longmapsto \begin{cases} 1-x & x < 1 \\ \sqrt{x-1} & x \ge 1 \end{cases}$
- **4.c)** φ est-elle injective? Déterminer $Ker(\phi)$.
- 5. On considère la restriction φ_2 de φ aux fonctions polynomiales de degrés inférieurs ou égales à 2. Déterminer une base de $Im(\varphi_2)$ et en déduire la dimension de $Ker(\varphi_2)$.